Building a learning agent
Let's see how to build a learning agent that can achieve a goal. The learning agent will learn how to achieve a goal. Create a new python file and import the following package:
import argparse import gym
Define a function to parse the input arguments:
def build_arg_parser(): parser = argparse.ArgumentParser(description='Run an environment') parser.add_argument('--input-env', dest='input_env', required=True, choices=['cartpole', 'mountaincar', 'pendulum'], help='Specify the name of the environment') return parser
Parse the input arguments:
if __name__=='__main__': args = build_arg_parser().parse_args() input_env = args.input_env
Build a mapping from the input arguments to the names of the environments in the OpenAI Gym package:
name_map = {'cartpole': 'CartPole-v0', 'mountaincar...