Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Architecting Cloud-Native Serverless Solutions
Architecting Cloud-Native Serverless Solutions

Architecting Cloud-Native Serverless Solutions: Design, build, and operate serverless solutions on cloud and open source platforms

eBook
€17.99 €26.99
Paperback
€33.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Architecting Cloud-Native Serverless Solutions

Serverless Computing and Function as a Service

Serverless computing has ushered in a new era to an already revolutionizing world of cloud computing. What started as a nascent idea to run code more efficiently and modularly has grown into a powerful platform of serverless services that can replace traditional microservices and data pipelines in their entirety. Such growth and adoption also brings in new challenges regarding integration, security, and scaling. Vendors are releasing newer services and feature additions to existing services all around, opening more and more choices for customers.

AWS has been a front runner in serverless offerings, but other vendors are catching up fast. Replacing in-house and self-hosted applications with serverless platforms is becoming a trend. Function as a Service (FaaS) is what drives serverless computing. While all cloud vendors are offering their version of FaaS, we are also seeing the rise of self-hosted FaaS platforms, making this a trend across cloud and data center infrastructures alike. People are building solutions that are cloud agnostic using these self-hosted platforms as well.

In this chapter, we will cover the foundations of serverless and FaaS computing models. We will also discuss the architecture patterns that are essential to serverless models.

In this chapter, we will cover the following topics:

  • Evolution of computing in the cloud
  • Serverless and FaaS
  • Microservice architecture
  • Event-driven architecture
  • FaaS in detail
  • API gateways and the rise of serverless APIs
  • The case for serverless

Evolution of computing in the cloud

In this section, we will touch on the evolution of cloud computing and why the cloud matters. We will briefly cover the technologies that drive the cloud and various delivery models.

Benefits of cloud computing

Cloud computing has revolutionized IT and has spearheaded unprecedented growth in the past decade. By definition, cloud computing is the availability and process of delivering computing resources on-demand over the internet. The traditional computing model required software services to invest heavily in the computing infrastructure. Typically, this meant renting infrastructure in a data center – usually called colocation – for recurring charges per server and every other piece of hardware, software, and internet they used. Depending on the server count and configurations, this number would be pretty high and was inflexible in the billing model – with upfront costs and commitments. If more customized infrastructure with access to network gears and more dedicated internet bandwidth is required, the cost would go even higher and it would have more upfront costs and commitments. Internet-scale companies had to build or rent entire data centers across the globe to scale their applications – most of them still do.

This traditional IT model always led to a higher total cost of ownership, as well as higher maintenance costs. But these were not the only disadvantages – lack of control, limited choices of hardware and software combinations, inflexibility, and slow provisioning that couldn't match the market growth and ever-increasing customer bases were all hindering the speed of delivery and the growth of applications and services. Cloud computing changed all that. Resources that were available only by building or renting a data center were now available over the internet, at a click of a button or a command. This wasn't just the case servers, but private networks, routers, firewalls, and even software services and distributed systems – which would take traditional IT a huge amount of manpower and money to maintain – were all available right around the virtual corner.

Cost has always been a crucial factor in deciding on which computing model to use and what investment companies are willing to make in the short and long term. In the next section, we will talk about the difference between the cost models in the cloud.

CAPEX versus OPEX

The impact of cloud computing is multifold. On one hand, it allows engineering and product teams to experiment with their products freely without worrying about planning for the infrastructure quarters or even years back. It also has the added benefit of not having to actively manage the cloud resources, unlike the data center infrastructure. Another reason for its wider adoption is the cost factor. The difference between traditional IT and the cloud in terms of cost is sometimes referred to as CAPEX versus OPEX.

CAPEX, also known as capital expenditure, is the initial and ongoing investments that are made in assets – IT infrastructure, in this case – to reap the benefits for the foreseeable future. This also includes the ongoing maintenance cost as it improves and increases the lifespan of the assets. On the other hand, the cloud doesn't require you to invest upfront in assets; the infrastructure is elastic and virtually unlimited as far as the customer is concerned. There is no need to plan for infrastructure capacity months in advance, or even worry about the underutilization of already acquired IT assets. Infrastructure can be built, scaled up or down, and ultimately torn down without any cost implications. The expenditure, in this case, is operating expenditure – OPEX. This is the cost that's incurred in running the day-to-day business and what's spent on utilities and consumables rather than long-term assets. The flexible nature of cloud assets makes them consumable rather than assets.

Let's look at a few technologies that accelerated the adoption of the cloud.

Virtualization, software-defined networking, and containers

While we understand and appreciate cloud computing and the benefits it brings, the technologies that made it possible to move from traditional data centers to the cloud need to be acknowledged.

The core technology that succeeded in capitalizing on the potential of hardware and building abstraction on top of it was virtualization. It allowed virtual machines to be created on top of the hardware and the host operating system. Network virtualization soon followed, in the form of Software-Defined Networking (SDN). This allowed vendors to provide a completely virtualized private network and servers on top of their IT infrastructure. Virtualization was prevalent much before cloud computing started but was limited to running in data centers and development environments, where the customers or vendors directly managed the entire stack, from hardware to applications.

The next phase of technological revolution came in the form of containers, spearheaded by Docker's container runtime. This allowed process, network, and filesystem isolation from the underlying operating system. It was also possible to enforce resource utilization limits on the processes running inside the container. This amazing feat was powered by Linux namespaces, cgroups, and Union Filesystem. Packaging runtimes and application code into containers led to the dual benefit of portability and a lean operating system. It was a win for both application developers and infrastructure operators.

Now that you are aware of how virtualization, SDN, and containers came around, let's start exploring the different types of cloud computing.

Types of cloud computing

In this section, we are going to look at different cloud computing models and how they differ from each other.

Public cloud

The public cloud is the cloud infrastructure that's available over the public internet and is built and operated by cloud providers such as Amazon, Azure, Google, IBM, and so on. This is the most common cloud computing model and is where the vendor manages all the infrastructure and ensures there's enough capacity for all use cases.

A public cloud customer could be anyone who signs up for an account and has a valid payment method. This provides an easy path to start building on cloud services. The underlying infrastructure is shared by all the customers of the public cloud across the globe. The cloud vendor abstracts out this shared-ness and gives each customer the feeling that they have a dedicated infrastructure to themselves. The capacity is virtually unlimited, and the reliability of the infrastructure is guaranteed by the vendor. While it provides all these benefits, the public cloud can also cause security loopholes and an increased attack surface if it's not maintained well. Excessive billing can happen due to a lack of knowledge of the cloud cost model, unrealistic capacity planning, or abandoning the rarely used resources without disposing of them properly.

Private cloud

Unlike with the public cloud, a private cloud customer is usually a single business or organization. A private cloud could be maintained in-house or in the company-owned data centers – usually called internal private clouds. Some third-party providers run dedicated private clouds for business customers. This model is called a hosted private cloud.

A private cloud provides more control and customization for businesses, and certain businesses prefer private clouds due to their business nature. For example, telecom companies prefer to run open source-based private clouds – Apache OpenStack is the primary choice of technology for a large number of telecom carriers. Hosting the cloud infrastructure also helps them integrate the telco hardware and network with the computing infrastructure, thereby improving their ability to provide better communication services. This added flexibility and control also comes at a cost – the cost of operating and scaling the cloud. From budget planning to growth predictions, to hardware and real estate acquisition for expansion, this becomes the responsibility of the business. The engineering cost – both in terms of technology and manpower – becomes a core cost center for the business.

Hybrid cloud

The hybrid cloud combines a public cloud and a physical infrastructure – either operated on-premises or on a private cloud. Data and applications can move between the public and private clouds securely to suit the business needs. Organizations could adopt a hybrid model for many reasons; they could be bound by regulations and compliance (such as financial institutions), low latency for certain applications to be placed close to the company infrastructure, or just because huge investments have already been made in the physical infrastructure. Most public clouds identify this as a valid business use case and provide cloud solutions that offer connectivity from cloud infrastructure to data centers through a private WAN-wide area network. Examples include AWS Direct Connect, GCP Interconnect, and Azure ExpressRoute.

An alternate form of hybrid cloud is the multi-cloud infrastructure. In these scenarios, one public cloud infrastructure is connected to one or more cloud infrastructures hosted by different vendors:

Figure 1.1 – Types of cloud computing

Figure 1.1 – Types of cloud computing

The preceding diagram summarizes the cloud computing types and how they are interrelated. Now that we understand these types, let's look at various ways in which cloud services are delivered.

Cloud service delivery models – IaaS, PaaS, and SaaS

While cloud computing initially started with services such as computing and storage, it soon evolved to offer a lot more services that handle data, computing, and software. These services are broadly categorized into three types based on their delivery models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Let's take a quick look at each of these categories.

Infrastructure as a service

In IaaS, the cloud vendor delivers services such as compute (virtual machines, containers, and so on), storage, and network as a cloud service – just like a traditional data center would. It also covers a lot of supporting services, such as firewall and security, monitoring, load balancing, and more. Out of all the service categories listed, IaaS provides the most control to the customer and they get to fine-tune and configure core services, as they would in a traditional IT infrastructure.

While the compute, storage, and network are made available to the customers as infrastructure pieces, these are not actual physical hardware. Instead, these resources are virtualized – as abstractions on top of the real hardware. There is a lesser-known variant of IaaS where the real hardware is directly provisioned and exposed to the customer. This category of services is called Bare-Metal as a Service (BMaaS). BMaaS provides much more control than IaaS to the customer and it is also usually costlier and takes more engineering time to manage.

Platform as a service

PaaS allows customers to develop, test, build, deploy, and manage their applications without having to worry about the resources or the build environment and its associated tooling. This could be considered as an additional layer of abstraction on top of IaaS. In addition to computing, storage, and network resources, PaaS also provides the operating system, container/middleware, and application runtime. Any updates that are required for the upkeep of the platform, such as operating system patching, will be taken care of by the vendor. PaaS enables organizations to focus on development without worrying about the supporting infrastructure and software ecosystem.

Any data that's needed for the PaaS applications is the responsibility of the user, though the data stores that are required will be provided by the vendors. Application owners have direct control of the data and can move it elsewhere if necessary.

Software as a service

In the SaaS model, a cloud vendor provides access to software via the internet. This cloud-based software is usually provided through a pay-as-you-go model where different sets of features of the same software are offered for varying charges. The more features used, the costlier the SaaS is. The pricing models also depend on the number of users using the software.

The advantage of SaaS is that it completely frees a customer from having to develop or operate their software. All the hassle of running such an infrastructure, including security and scaling, are taken care of by the vendor. The only commitment from the customer is the subscription fee that they need to pay. This freedom also comes at the cost of complete vendor dependency. The data is managed by the vendor; most vendors would enable their customers to take a backup of their data since finding a compatible vendor or reusing that data in-house could become challenging:

Figure 1.2 – Cloud service delivery models

Figure 1.2 – Cloud service delivery models

Now that we have cemented our foundations of cloud computing, let's look at a new model of computing – FaaS.

Serverless and FaaS

In the previous sections, we discussed various types of clouds, cloud service delivery models, and the core technologies that drove this technology revolution. Now that we have established the baselines, it is time to define the core concept of this book – serverless.

When we say serverless, what we are usually referring to is an application that's built on top of a serverless platform. Serverless started as a new cloud service delivery model where everything except the code is abstracted away from the application developer. This sounds like PaaS as there are no servers to manage and the application developer's responsibility is limited to writing the code. There are some overlaps, but there are a few distinctive differences between PaaS and serverless, as follows:

PaaS

Serverless

Always-on application

Runs on demand

Scaling requires configuration

Automatic scaling

More control over the development and deployment infrastructure

Very limited control over the development and deployment infrastructure

High chance of idle capacity

Full utilization and no idle time, as well as visibility to fine-tune and benchmark business logic

Billed for the entirety of the application's running time

Billed every time the business logic is executed

Table 1.1 – PaaS versus serverless

In the spectrum of cloud service delivery models, serverless can be placed between PaaS and SaaS.

FaaS and BaaS

The serverless model became popular in 2014 after AWS introduced a service called Lambda, which provides FaaS. Historically, other services could be considered ancestors of serverless, such as Google App Engine and iron.io. Lambda, in its initial days, allowed users to write functions in a selected set of language runtimes. This function could then be executed in response to a limited set of events or be scheduled to run at an interval, similar to a cronjob. It was also possible to invoke the function manually.

As we mentioned previously, Lambda was one of the first services in the category of FaaS and established itself as a standard. So, when we say serverless, people think of FaaS and, subsequently, Lambda. But FaaS is just one part of the puzzle – it serves as the computing component of serverless. As is often the case, compute is meaningless without data and a way to provide input and output. This is where a whole range of supporting services come into the picture. There are services in the category of API gateways, object stores, relational databases, NoSQL databases, communication buses, workflow management, authentication services, and more. In general, these services power the backend for serverless computing. These services can be categorized as Backend as a Service (BaaS). We will look at BaaS in the next chapter.

Before we get into the details of FaaS, let's review two architecture patterns that you should know about to understand serverless – the microservice architecture and the Event-Driven Architecture (EDA).

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn with DIY projects and step-by-step instructions for different serverless technologies and vendors
  • Explore detailed sections on running serverless workloads across Kubernetes and virtual machines
  • Discover Cloudflare Serverless Solutions to modernize your web applications

Description

Serverless computing has emerged as a mainstream paradigm in both cloud and on-premises computing, with AWS Lambda playing a pivotal role in shaping the Function-as-a-Service (FaaS) landscape. However, with the explosion of serverless technologies and vendors, it has become increasingly challenging to comprehend the foundational services and their offerings. Architecting Cloud Native Serverless Solutions lays a strong foundation for understanding the serverless landscape and technologies in a vendor-agnostic manner. You'll learn how to select the appropriate cloud vendors and technologies based on your specific needs. In addition, you'll dive deep into the serverless services across AWS, GCP, Azure, and Cloudflare followed by open source serverless tools such as Knative, OpenFaaS, and OpenWhisk, along with examples. You'll explore serverless solutions on Kubernetes that can be deployed on both cloud-hosted clusters and on-premises environments, with real-world use cases. Furthermore, you'll explore development frameworks, DevOps approaches, best practices, security considerations, and design principles associated with serverless computing. By the end of this serverless book, you'll be well equipped to solve your business problems by using the appropriate serverless vendors and technologies to build efficient and cost-effective serverless systems independently.

Who is this book for?

This book is for DevOps, platform, cloud, site reliability engineers, or application developers looking to build serverless solutions. It’s a valuable reference for solution architects trying to modernize a legacy application or working on a greenfield project. It’s also helpful for anyone trying to solve business or operational problems without wanting to manage complicated technology infrastructure using serverless technologies. A basic understanding of cloud computing and some familiarity with at least one cloud vendor, Python programming language, and working with CLI will be helpful when reading this book.

What you will learn

  • Understand the serverless landscape and its potential
  • Build serverless solutions across AWS, Azure, and GCP
  • Develop and run serverless applications on Kubernetes
  • Implement open source FaaS with Knative, OpenFaaS, and OpenWhisk
  • Modernize web architecture with Cloudflare Serverless
  • Discover popular serverless frameworks and DevOps for serverless
  • Explore software design and serverless architecture patterns
  • Acquire an understanding of serverless development and security best practices

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 23, 2023
Length: 350 pages
Edition : 1st
Language : English
ISBN-13 : 9781803235998
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jun 23, 2023
Length: 350 pages
Edition : 1st
Language : English
ISBN-13 : 9781803235998
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 113.97
AWS for Solutions Architects
€41.99
The Ultimate Docker Container Book
€37.99
Architecting Cloud-Native Serverless Solutions
€33.99
Total 113.97 Stars icon

Table of Contents

16 Chapters
Part 1 – Serverless Essentials Chevron down icon Chevron up icon
Chapter 1: Serverless Computing and Function as a Service Chevron down icon Chevron up icon
Chapter 2: Backend as a Service and Powerful Serverless Platforms Chevron down icon Chevron up icon
Part 2 – Platforms and Solutions in Action Chevron down icon Chevron up icon
Chapter 3: Serverless Solutions in AWS Chevron down icon Chevron up icon
Chapter 4: Serverless Solutions in Azure Chevron down icon Chevron up icon
Chapter 5: Serverless Solutions in GCP Chevron down icon Chevron up icon
Chapter 6: Serverless Cloudflare Chevron down icon Chevron up icon
Chapter 7: Kubernetes, Knative and OpenFaaS Chevron down icon Chevron up icon
Chapter 8: Self-Hosted FaaS with Apache OpenWhisk Chevron down icon Chevron up icon
Part 3 – Design, Build, and Operate Serverless Chevron down icon Chevron up icon
Chapter 9: Implementing DevOps Practices for Serverless Chevron down icon Chevron up icon
Chapter 10: Serverless Security, Observability, and Best Practices Chevron down icon Chevron up icon
Chapter 11: Architectural and Design Patterns for Serverless Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9
(7 Ratings)
5 star 85.7%
4 star 14.3%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Rajaseelan Aug 25, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This books starts with whys of Serverless, and ends with patterns.What I like is, how the author covers some of the common serverless platforms that are NOT LIMITED to the Big 3 Cloud Providers. Cloudflare has been picking in the edge, and reading the about the offerings here has made me want to try it out, as they have a decent developer tier.The treatment given to Serverless offerings via kubernetes was also great, as it mean you can start designing your application to be "serverless native", and utilize the portability of of kubernetes to deploy it across various platforms.Emphasis on DevOps practices is also welcome, as too often, the ease of deploying functions means developers neglect the CD part of the deployment cycle. Missing in most serverless achitecture talks is observability. This was given the proper treatment here.
Amazon Verified review Amazon
Anonymous Jul 15, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book is exceptionally informative, with well-organized content and stunning print quality.This book is definitely worth the money and time invested.
Amazon Verified review Amazon
Pavan Belagatti Jul 24, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
'Architecting Cloud-Native Serverless Solutions' is an amazing book that every cloud-native architect should have on his/her bookshelf. Gives some good insights into the facts while building through a serverless approach.
Amazon Verified review Amazon
Tiny Aug 21, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Too often, when starting a DevOps journey, one forgets that architecture and design remain critical components. When you build a feature, it needs to fit into the overall design process. While features often live by themselves, understanding the overall architecture is a key component. When we process those details, having a mindset towards where the fit into the architecture is a key component. Recommend using this book to refresh your knowledge of serverless applications.
Amazon Verified review Amazon
Amazon Customer Jul 18, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Architecting Cloud Native Serverless Solutions by Safeer CM is a comprehensive guide to designing, building, and operating serverless solutions. The book covers a wide range of topics, from the basics of serverless computing to more advanced topics such as serverless on Kubernetes and serverless security.The book is well-written and easy to follow, even for readers with no prior experience with serverless computing. The author does a good job of explaining the concepts in a clear and concise way, and he provides plenty of examples to illustrate his points.One of the strengths of the book is that it covers a wide range of serverless platforms. The author discusses the major cloud providers (AWS, Azure, GCP, and Cloudflare) as well as open source serverless platforms such as Knative, OpenFaaS, and OpenWhisk. This gives readers the flexibility to choose the platform that best meets their needs.Another strength of the book is that it covers a wide range of topics. The author not only discusses the technical aspects of serverless computing, but he also discusses the business and operational aspects. This makes the book a valuable resource for both technical and non-technical readers.Overall, Architecting Cloud Native Serverless Solutions is an excellent book for anyone who wants to learn more about serverless computing. The book is well-written, easy to follow, and comprehensive. I highly recommend it to anyone who is interested in serverless computing.Here are some of the pros and cons of the book:Pros: Well-written and easy to follow Covers a wide range of topics Includes real-world examples Provides a good overview of the serverless landscapeCons: Some of the technical content may be too advanced for some readers The book is not as up-to-date as some other serverless booksOverall, I would highly recommend this book to anyone who is interested in learning more about serverless computing. It is a comprehensive and well-written resource that will give you the knowledge you need to get started with serverless computing.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.