Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with Python

You're reading from   Applied Unsupervised Learning with Python Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789952292
Length 482 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Unsupervised Learning with Python
Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimension Reduction and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Summary


In this chapter, we started with an introduction to artificial neural networks, how they are structured, and the processes by which they learn to complete a particular task. Starting with a supervised learning example, we built an artificial neural network classifier to identify objects within the CIFAR-10 dataset. We then progressed to the autoencoder architecture of neural networks and learned how we can use these networks to prepare a dataset for use in an unsupervised learning problem. Finally, we completed this investigation with autoencoders, looking at convolutional neural networks and the benefits these additional layers can provide. This chapter prepared us well for the final instalment in dimensionality reduction, as we look at using and visualizing the encoded data with t-distributed nearest neighbors (t-SNE). T-distributed nearest neighbors provides an extremely effective method of visualizing high-dimensional data even after applying reduction techniques such as PCA...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime