Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applied Supervised Learning with R

You're reading from   Applied Supervised Learning with R Use machine learning libraries of R to build models that solve business problems and predict future trends

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781838556334
Length 502 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jojo Moolayil Jojo Moolayil
Author Profile Icon Jojo Moolayil
Jojo Moolayil
Karthik Ramasubramanian Karthik Ramasubramanian
Author Profile Icon Karthik Ramasubramanian
Karthik Ramasubramanian
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Supervised Learning with R
Preface
1. R for Advanced Analytics FREE CHAPTER 2. Exploratory Analysis of Data 3. Introduction to Supervised Learning 4. Regression 5. Classification 6. Feature Selection and Dimensionality Reduction 7. Model Improvements 8. Model Deployment 9. Capstone Project - Based on Research Papers Appendix

Chapter 9: Capstone Project - Based on Research Papers


Activity 14: Getting the Binary Performance Step with classif.C50 Learner Instead of classif.rpart

  1. Define the algorithm adaptation methods:

    multilabel.lrn3 = makeLearner("multilabel.rFerns")
    multilabel.lrn4 = makeLearner("multilabel.randomForestSRC")
    multilabel.lrn3

    The output is as follows:

    ## Learner multilabel.rFerns from package rFerns
    ## Type: multilabel
    ## Name: Random ferns; Short name: rFerns
    ## Class: multilabel.rFerns
    ## Properties: numerics,factors,ordered
    ## Predict-Type: response
    ## Hyperparameters:
  2. Use the problem transformation method, and change the classif.rpart learner to classif.C50:

    lrn = makeLearner("classif.C50", predict.type = "prob")
    multilabel.lrn1 = makeMultilabelBinaryRelevanceWrapper(lrn)
    multilabel.lrn2 = makeMultilabelNestedStackingWrapper(lrn)

    Note

    You need to install the C50 package for this code to work.

  3. Print the learner details:

    lrn

    The output is as follows:

    ## Learner classif.C50 from package C50
    ## Type: classif
    ## Name: C50; Short name: C50
    ## Class: classif.C50
    ## Properties: twoclass,multiclass,numerics,factors,prob,missings,weights
    ## Predict-Type: prob
    ## Hyperparameters:
  4. Print the multilabel learner details:

    multilabel.lrn1

    The output is as follows:

    ## Learner multilabel.binaryRelevance.classif.C50 from package C50
    ## Type: multilabel
    ## Name: ; Short name: 
    ## Class: MultilabelBinaryRelevanceWrapper
    ## Properties: numerics,factors,missings,weights,prob,twoclass,multiclass
    ## Predict-Type: prob
    ## Hyperparameters:
  5. Train the model using the same dataset with training dataset:

    df_nrow <- nrow(df_scene)
    df_all_index <- c(1:df_nrow)
    train_index <- sample(1:df_nrow, 0.7*df_nrow)
    test_index <- setdiff(df_all_index,train_index)
    scene_classi_mod = train(multilabel.lrn1, scene.task, subset = train_index)
  6. Print the model details:

    scene_classi_mod

    The output is as follows:

    ## Model for learner.id=multilabel.binaryRelevance.classif.C50; learner.class=MultilabelBinaryRelevanceWrapper
    ## Trained on: task.id = multi; obs = 1684; features = 294
    ## Hyperparameters:
  7. Predict the output using the C50 model we created for the test dataset:

    pred = predict(scene_classi_mod, task = scene.task, subset = test_index)
    names(as.data.frame(pred))

    The output is as follows:

    ##  [1] "id"                   "truth.Beach"          "truth.Sunset"        
    ##  [4] "truth.FallFoliage"    "truth.Field"          "truth.Mountain"      
    ##  [7] "truth.Urban"          "prob.Beach"           "prob.Sunset"         
    ## [10] "prob.FallFoliage"     "prob.Field"           "prob.Mountain"       
    ## [13] "prob.Urban"           "response.Beach"       "response.Sunset"     
    ## [16] "response.FallFoliage" "response.Field"       "response.Mountain"   
    ## [19] "response.Urban"
  8. Print the performance measures:

    MEASURES = list(multilabel.hamloss, multilabel.f1, multilabel.subset01, multilabel.acc, multilabel.tpr, multilabel.ppv)
    
    performance(pred, measures = MEASURES)

    The output is as follows:

    ##  multilabel.hamloss       multilabel.f1 multilabel.subset01 
    ##           0.1258645           0.5734901           0.5532503 
    ##      multilabel.acc      multilabel.tpr      multilabel.ppv 
    ##           0.5412633           0.6207930           0.7249104
  9. Print the performance measures for the listMeasures variable:

    listMeasures("multilabel")

    The output is as follows:

    ##  [1] "featperc"            "multilabel.tpr"      "multilabel.hamloss" 
    ##  [4] "multilabel.subset01" "timeboth"            "timetrain"          
    ##  [7] "timepredict"         "multilabel.ppv"      "multilabel.f1"      
    ## [10] "multilabel.acc"
  1. Run the resampling with cross-validation method:

    rdesc = makeResampleDesc(method = "CV", stratify = FALSE, iters = 3)
    r = resample(learner = multilabel.lrn1, task = scene.task, resampling = rdesc,measures = list(multilabel.hamloss), show.info = FALSE)
    r

    The output is as follows:

    ## Resample Result
    ## Task: multi
    ## Learner: multilabel.binaryRelevance.classif.C50
    ## Aggr perf: multilabel.hamloss.test.mean=0.1335695
    ## Runtime: 72.353
  2. Print the binary performance:

    getMultilabelBinaryPerformances(r$pred, measures = list(acc, mmce, auc))

    The output is as follows:

    ##             acc.test.mean mmce.test.mean auc.test.mean
    ## Beach           0.8608226     0.13917740     0.8372448
    ## Sunset          0.9401745     0.05982551     0.9420085
    ## FallFoliage     0.9081845     0.09181554     0.9008202
    ## Field           0.8998754     0.10012464     0.9134458
    ## Mountain        0.7710843     0.22891566     0.7622767
    ## Urban           0.8184462     0.18155380     0.7837401
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image