Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Least-squares GAN (LSGAN)


As discussed in the previous section, the original GAN is difficult to train. The problem arises when the GAN optimizes its loss function; it's actually optimizing the Jensen-Shannon divergence, DJS. It is difficult to optimize DJS when there is little to no overlap between two distribution functions.

WGAN proposed to address the problem by using the EMD or Wasserstein 1 loss function which has a smooth differentiable function even when there is little or no overlap between the two distributions. However, WGAN is not concerned with the generated image quality. Apart from stability issues, there are still areas of improvement in terms of perceptive quality in the generated images of the original GAN. LSGAN theorizes that the twin problems can be solved simultaneously.

LSGAN proposes the least squares loss. Figure 5.2.1 demonstrates why the use of a sigmoid cross entropy loss in the GAN results in poorly generated data quality. Ideally, the fake samples distribution...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image