Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
3D Printing with Fusion 360

You're reading from   3D Printing with Fusion 360 Design for additive manufacturing, and level up your simulation and print preparation skills

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781803246642
Length 438 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sualp Ozel Sualp Ozel
Author Profile Icon Sualp Ozel
Sualp Ozel
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Design for Additive Manufacturing (DFAM) and Fusion
2. Chapter 1: Opening, Inspecting, and Repairing CAD and Mesh files FREE CHAPTER 3. Chapter 2: Editing CAD/Mesh Files with DFAM Principles in Mind 4. Chapter 3: Creating Lightweight Parts, and Identifying and Fixing Potential Failures with Simulation 5. Chapter 4: Hollowing and Latticing Parts to Reduce Material and Energy Usage 6. Part 2: Print Preparation – Creating an Additive Setup
7. Chapter 5: Tessellating Models and Exporting Mesh Files to Third-Party Slicers 8. Chapter 6: Introducing the Manufacture Workspace for Print Preparation 9. Chapter 7: Creating Your First Additive Setup 10. Part 3: Print Preparation – Positioning Parts, Generating Supports, and Toolpaths
11. Chapter 8: Arranging and Orienting Components 12. Chapter 9: Print Settings 13. Chapter 10: Support Structures 14. Chapter 11: Slicing Models and Simulating the Toolpath 15. Part 4: Metal Printing, Process Simulation, and Automation
16. Chapter 12: 3D Printing with Metal Printers 17. Chapter 13: Simulating the MPBF Process 18. Chapter 14: Automating Repetitive Tasks 19. Index 20. Other Books You May Enjoy

Common mesh file formats and their differences

In computer-aided design and modeling, a mesh is a collection of vertices and edges that defines the shape of an object. If we are dealing with a 2D design, we end up with a collection of lines. If we are 3D-modeling an object, we can represent a shape using polygons made up of vertices and edges. The simplest form of a polygon is a triangle. A triangle represents a face, and when we have multiple faces coming together with common edges, we can model any geometry. Whenever a model is represented using a collection of polygons, it is referred to as a mesh model. At its core, a mesh model can be represented with the coordinates of all the vertices and an identifier for each vertex. You also need a list of edges that connect two vertices. Finally, you need a list of faces that are made up of three or more edges. Because of the simplicity of the definition of a mesh file, there are tens of mesh file formats out there.

STL format

The...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image