Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
3D Printing Designs: Fun and Functional Projects
3D Printing Designs: Fun and Functional Projects

3D Printing Designs: Fun and Functional Projects: A step-by-step guide for precise and accurate 3D modelling using Blender

eBook
€13.98 €19.99
Paperback
€24.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

3D Printing Designs: Fun and Functional Projects

Chapter 1. 3D Printing Basics

As cool as 3D printing is, there is a lot of hype around it, which sometimes causes confusion. Before starting to design for 3D printing, it's best to know a little bit about 3D printing technologies.

3D printing is a limitless technology in the sense that there is no end to the things it can make. Still, that doesn't mean that it can make anything without limitations. 3D printing can make things that no other manufacturing method can, but it has rules that need to be followed to ensure success. There are different types of 3D printing as well, and each type comes with its benefits and drawbacks:

3D Printing Basics

In this chapter, we'll discuss:

  • What is 3D printing?
  • What types of 3D printing are there?
  • How do FFF printers work?
  • The anatomy of an FFF print.
  • Supportless 3D printing and YHT.
  • Wall thickness and tolerances.

What is 3D printing?

3D printing is cool. It seems as if not a day passes without another mention of 3D printing online in the news and media. Everyone is getting excited about 3D printing. But when you look deeper, it seems as if everything is being 3D printed, and anything could be. Does 3D printing something make it better? What exactly is 3D printing?

In many ways, 3D printers are just tools, the same as any that you'd find in a wood shop or garage. These tools make cool things, but not on their own, and just because something is made with, say, an electric drill press, that doesn't automatically make it better than something that isn't. It's the things that people, like you, are doing with these tools that make them cool.

I'm not saying that 3D printing isn't cool by itself. 3D printing lets you create things, test them, change their design, and try something new quickly until you get it right. It makes things of incredible complexity and, because it's additive manufacturing, generates comparatively little waste. The availability of cheaper and faster 3D printers means that there's a chance that there's a 3D printer near you.

What defines 3D printing?

There are many different types of 3D printers, but what makes them all similar is that they build solid shapes from layers of materials, starting with an empty build area and filling it with the print. This is called additive manufacturing, and it produces less waste than other techniques, such as starting with a base material that is cut away to make the thing.

3D printers also benefit from being computer-controlled machines, also known as computerized numerical control (CNC) machines, meaning they do what they do with minimal human interaction after the design work is done. They can make many identical copies of a thing one right after the other, and the design can be shared online so that others can make their own copies.

While all 3D printing shares come common features, there are several distinct types of 3D printing that vary in how they produce the print. Fused filament fabrication (FFF), powder bed, or light polymerization, for example, all accomplish 3D printing in very different ways, and each with their own strengths and weaknesses. What works in powder bed 3D printing might not work with FFF 3D printing, and the part you get from light polymerization might not be suitable for the same usage as those made with the other techniques.

What to design for?

It is the best practice to always design towards the strengths and weaknesses of the medium you'll be using. The projects in this series of books will focus on designing for FFF 3D printers, because they're inexpensive and more readily available than the others, and the parts made with FFF 3D printers are suitable for a wide variety of functional uses. Also, many of the techniques for FFF design transfer to the other types of 3D printing. But because FFF 3D printers have limitations, there will be some things you need to know first.

How do FFF printers work?

There tends to be a lot of variation within the family of FFF 3D printers. Some have their mechanisms exposed to the environment so that they're easy to repair, while some are protected with fancy covers so that they look good. Some have one extruder, while some have two or more. Some have fancy interface screens, and some require you to use a computer to access even the most basic functions. Yet, for all their variations, there are many similarities that all FFF printers share which define their type. Being familiar with how FFF 3D printers work will help you guide yourself while designing for them.

For FFF 3D printers, a computer takes a 3D model and translates it into commands that the printer can follow. The printer then takes a roll of plastic filament on a spool and uses a feeder mechanism to feed it into the hot end, where the plastic filament is melted and squirted out at a controlled rate onto the print bed, where the print is built up. The extruder head and print bed are moved relative to each other in 3 dimensions, using some sort of movement system in order to create the 3D model:

How do FFF printers work?

Drawing a print layer by layer like this takes, as might be expected, a little bit of time. The larger the object, the longer a print will take. FFF 3D printing isn't a fast process. But once the process is done, a new thing will have been created.

The anatomy of a print

Now that the mechanics of FFF 3D printing are clear, it's time to take a look at how a print is built. If an FFF print is stopped partway through, or observed during printing, the following can be seen:

The anatomy of a print

The following are the different parts shown in the preceding image:

  • Layers: FFF prints in layers, with each layer sitting on the one below it. Prints can be made with thicker layers so that they print faster or thinner layers so that they look better.
  • Outlines: When starting a layer, the outline of that layer will usually be printed first. FFF prints often have two or more outlines so that the outside of the print is strong.
  • Infill: once the outline is done, the rest of the layer is filled in. If an area of the print will not be seen from the outside when the print is done, a loose infill is used to save material and give layers above something to sit on. Top layers are filled in completely. Most FFF prints are largely hollow.

FFF design considerations

The basic limitations of FFF printers stem from the fact that most FFF 3D printers are developed by people who have very little accountability. To the people creating and manufacturing these printers, if the printer can print a thing most of the time, then that's probably good enough. In this way, FFF printers are more like garage tools than desktop machines. For those unfamiliar with FFF printers, there are some drawbacks that need to be taken into account.

Overhangs and supports

FFF 3D printers have to worry about overhang. Overhang is when a part of the design, when it prints, will not have anything between it and the build platform. To compensate for this, the 3D printer can build a lattice of support material up to the overhanging part. After the print, the support material will have to be removed. But since for most FFF 3D printers the support material is made of the same material as the object, it can rarely be removed without a trace that is sometimes difficult to clean up completely and can leave a mess on more complex prints:

Overhangs and supports

Because of the troubles with supports, it's a good idea to design for supportless 3D printing.

Supportless 3D printing

Think about building a snowman or sand castle. There's a lot that can be done with the medium of sand or snow, but try to get too fancy with the design and it will fall apart. As long as every part is sitting on top of something, chances are it will hold together. You could even slope gently outwards, as long as you don't push it too far.

It's the same with 3D prints. Because it prints in layers, each layer needs to have something to lay down on. If a design is made so that a part has nothing underneath it and is dangling in the air, then the printer will still extrude some plastic to try to print the part, but with nothing to print on, the plastic will just drool from the extruder until it gets wiped off on some other part, making an ugly mess and ruining the print.

As long as you put some thought into it, you can make designs that will succeed in most cases. There are a few rules that can help, and these rules can be illustrated with the letters Y, H, and T.

Y – gentle overhangs

Think about 3D printing a capital letter Y, standing up on the build platform—something like this:

Y – gentle overhangs

As the print gets to the part where the arms of the Y branch out, the change is gradual. It is possible to have the current layer slightly larger than the previous one, provided the overhang is gentle. Generally, a 45-degree overhang is safe. Hence, a shape like the letter Y will successfully print standing up.

However, if the overhang is too great or too abrupt, the new layer will droop, causing a print to fail. Some 3D printer owners pride themselves in pushing their overhang and have seen success with angles as steep as 80 degrees, but to be safe, keep your angles no more than 45 degrees.

H – bridging

If a part of the print has nothing above it but has something supporting it on either side, like a capital letter H standing up, then it may be able to bridge the gap when printing:

H – bridging

Use caution when bridging. The printer makes no special effort when making bridges; they are drawn like any other layer: outline first, then infill. As long as the outline has something to attach to on both sides, it should be fine. But if that outline is too complex or contains parts that will print in midair, it may not succeed. Being aware of bridges in the design and keeping them simple is the key to successful bridging. Even with a simple bridge, some 3D printers need a little bit more calibration to print it well.

Hence, a shape like the capital letter H will successfully print most of the time because of bridging.

T – orientation

If you were to try to print a capital letter T standing up on the build platform, you would surely run into problems:

T – orientation

The top arms have far too much overhang to print successfully. Of course, the solution to this is simple: when designing, flip the T over or lay it down. In fact, every letter of the alphabet will print successfully if laid on its back, but the letter T illustrates this best. Sometimes, when designing a part for 3D printing, it's good to turn it around and orient it so that it prints well. Not every print needs to be printed in the same way it's going to be used.

Wall thickness

There is a minimum size of things that a 3D printer can print. This size is determined by the size of the hole in the nozzle, called the nozzle diameter. The most common nozzle diameter is 0.4 mm; however, most printers will not print a wall with a single extrusion thickness. They require that a wall be at least as thick as two nozzle widths, which in most cases means walls need to be at least 0.8 mm. However, because of the way slicers calculate outlines, 0.8 mm isn't just a minimum wall thickness—it's a target. For instance, if the wall is 1 mm thick, it won't be able to fill in the gap between the outlines, and there will be an air pocket. And while 0.4 mm is a very common nozzle diameter, it is not the only nozzle diameter, so a 0.8 mm wall may still be too thin for some 3D printers.

For thickness, it's best to err on the side of caution. A 2 mm wall is thick enough that slicers can use one or two outlines without conflict and still have room for a little infill, no matter the nozzle diameter. This will make solid prints that will succeed in almost all cases, and 2 mm is still fairly thin, allowing for considerable detail. Unless you are designing for a specific printer or planning to share your model with others, always make your walls a minimum of 2 mm thick to be safe.

Holes in models

Models for 3D printing must be closed, that is to say, they must have no holes in them. In a classic cartoon, there was a scene where bubbles were blown, but they were not bubble shaped. They were square, squiggly, and pink-elephant shaped. But no matter their shape, they were still bubbles. If a hole developed in them, they popped. In the same way, models for 3D printing cannot have holes:

Holes in models

In mathematical terms, holes in models are included in a family of errors called non-manifold. Models for 3D printing must be manifold or else the slicer will have trouble telling what is supposed to be the inside and outside of the model.

In the same vein, a wall by itself, without an inside or outside, isn't printable because a 2D wall has no thickness and doesn't describe a shape that can exist in real life. 3D prints must be part of a three-dimensional shape with a thickness, as described in the previous section.

Holes in models

Summary

3D printing is cool and allows the creation of fantastic and detailed objects without needing much interaction with people after the design is done. But designing for 3D printing is a lot like designing for any other type of manufacturing. It helps to know a bit about the process involved and design with that process in mind.

Fused filament fabrication 3D printing, or FFF for short, is one of the oldest, most mature, and cheapest forms of 3D printing, so this series will focus on designing for it. It involves melting a plastic filament and drawing the object layer by layer, with each layer sitting on top of the one below it.

Designing for the most effective FFF printing means thinking about overhangs and supports and about the parts of the prints that don't have anything underneath them when they print. To avoid needing supports when printing, it can help to remember the letters Y, H, and T when designing, in order to remember to consider gradual overhangs, bridging, and orientation. In addition, it's important to remember that details should be, generally, about 2 mm thick.

Now that the mechanics of 3D printing and how they affect design have been covered, the next chapter will deal with the specific software that will be used in this series.

Left arrow icon Right arrow icon

Key benefits

  • From the author who brought you the first practical look at 3D printing with 3D Printing Blueprints
  • Get a comprehensive coverage of the prototyping techniques you need to know to start printing your own 3D designs
  • Rekindle your mathematical genius to design personalized objects for complex puzzles

Description

3D printing has revolutionized the way that global industries conceptualize and design products for mass consumption. Considered as the next “trillion-dollar” business, every industry is in the race to equip its personnel with techniques to prototype and simplify complex manufacturing process. This book will take you through some simple to complex and effective principles of designing 3D printed objects using Blender. There is a comprehensive coverage of projects such as a 3D print-ready octopus pencil holder, which will teach you how to add basic geometric shapes, and use techniques such as extruding and subdividing to transform these shapes into complex meshes. Furthermore, you’ll learn to use various techniques to derive measurements for an object, model these objects using Blender, organize the parts into layers, and later combine them to create the desired object with the help of a 3D printable SD card holder ring design project. The final project will help you master the techniques of designing simple to complex puzzles models for 3D printing. Through the course of the book, we'll explore various robust sculpting methods supported by Blender to create objects. You’ll move, rotate, and scale the object, and manipulate the view. You’ll edit objects with actions such as bends or curves, similar to drawing or building up a clay structure of different shapes and sizes. By the end of the book, you will have gained thorough practical hands-on experience to be able to create a real-world 3D printable object of your choice.

Who is this book for?

If you’re new to the world of 3D printing, this is the book for you. Some basic knowledge of Blender and geometry would be helpful, but is not necessary.

What you will learn

  • Get to know about the different types of 3D printers and their limitations
  • See how Y, H, and T shapes illustrate different ideas of successful 3D design for home 3D printers
  • Set up and configure Blender to model a file for 3D printing
  • Understand material characteristics, printing specifications, tolerances, and design tips
  • Work through the techniques of editing complex meshes, smoothing, combining shapes, and exporting them into STL files for printing
  • Break down complex geometries into multiple simple shapes and model them in layers using Blender
  • Design, manipulate, and export 3D models for 3D printing with Blender
  • Master the art of creating meshes, scaling, subdivision, and adding detail with the Boolean modifier as well as sculpting a custom shape
  • Cut a model into small pieces and understand how to design complex interlocking joints that form a part of a jigsaw puzzle

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 27, 2016
Length: 200 pages
Edition : 1st
Language : English
ISBN-13 : 9781785889752
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want

Product Details

Publication date : Jun 27, 2016
Length: 200 pages
Edition : 1st
Language : English
ISBN-13 : 9781785889752
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 108.97
3D Printing Blueprints
€41.99
Blender 3D Printing by Example
€41.99
3D Printing Designs: Fun and Functional Projects
€24.99
Total 108.97 Stars icon

Table of Contents

8 Chapters
1. 3D Printing Basics Chevron down icon Chevron up icon
2. Beginning Blender Chevron down icon Chevron up icon
3. The Octopus Pencil Holder Chevron down icon Chevron up icon
4. Measuring Basics Chevron down icon Chevron up icon
5. An SD Card Holder Ring Chevron down icon Chevron up icon
6. Sculpting the Face of the Sun Chevron down icon Chevron up icon
7. Cutting a 3D Jigsaw Puzzle Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
(3 Ratings)
5 star 66.7%
4 star 0%
3 star 0%
2 star 33.3%
1 star 0%
Peter T. Phelps Aug 17, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I'm a big fan of Joe Larson's Blender books and how he tries to make it easy for the novice to create 3D printing projects. In tho volume I appreciate the ring size chart that makes it easy to find your size and set up the correct metric size. The sun puzzle was my first time successfully using the Blender sculpting tools. I decided to go a bit different from the lesson and try to make it my own. He's supposed to be angry instead, ha ha. Can't wait to see what book projects this author will publish in the future!
Amazon Verified review Amazon
LookasPolynoth May 16, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I got up and designing my own things to print after one read through. just follow the book, and repeat the commands to your self over and over, or even practice them over and over while you are learning about them, and you will be able to design pretty much anything in a day or so.
Amazon Verified review Amazon
Amazon Customer Oct 12, 2016
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
For the price of this "paperback" ($30), one would expect better pictures/diagrams. First time I have ever had experience with Packet Publishing Books. Every "screen picture" of the Blender software is in black and grey; and tiny in size. Very difficult to look at the picture and see where the arrows and marks are that the instructor is trying to draw your attention too. There is an option to download all the pictures that are in this book; in color; but then you have to go from book to picture as you try to learn. Will not buy a "Packt Publishing" book again. I don't fault the author, but the publishing company.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.