Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Solutions Architect Handbook

You're reading from   The Machine Learning Solutions Architect Handbook Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781805122500
Length 602 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Ping David Ping
Author Profile Icon David Ping
David Ping
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Navigating the ML Lifecycle with ML Solutions Architecture FREE CHAPTER 2. Exploring ML Business Use Cases 3. Exploring ML Algorithms 4. Data Management for ML 5. Exploring Open-Source ML Libraries 6. Kubernetes Container Orchestration Infrastructure Management 7. Open-Source ML Platforms 8. Building a Data Science Environment Using AWS ML Services 9. Designing an Enterprise ML Architecture with AWS ML Services 10. Advanced ML Engineering 11. Building ML Solutions with AWS AI Services 12. AI Risk Management 13. Bias, Explainability, Privacy, and Adversarial Attacks 14. Charting the Course of Your ML Journey 15. Navigating the Generative AI Project Lifecycle 16. Designing Generative AI Platforms and Solutions 17. Other Books You May Enjoy
18. Index

Navigating the ML Lifecycle with ML Solutions Architecture

The field of artificial intelligence (AI) and machine learning (ML) has had a long history. Over the last 70+ years, ML has evolved from checker game-playing computer programs in the 1950s to advanced AI capable of beating the human world champion in the game of Go. More recently, Generative AI (GenAI) technology such as ChatGPT has been taking the industry by storm, generating huge interest among company executives and consumers alike, promising new ways to transform businesses such as drug discovery, new media content, financial report analysis, and consumer product design. Along the way, the technology infrastructure for ML has also evolved from a single machine/server for small experiments and models to highly complex end-to-end ML platforms capable of training, managing, and deploying tens of thousands of ML models. The hyper-growth in the AI/ML field has resulted in the creation of many new professional roles, such as MLOps engineering, AI/ML product management, ML software engineering, AI risk manager, and AI strategist across a range of industries.

Machine learning solutions architecture (ML solutions architecture) is another relatively new discipline that is playing an increasingly critical role in the full end-to-end ML lifecycle as ML projects become increasingly complex in terms of business impact, science sophistication, and the technology landscape.

This chapter will help you understand where ML solutions architecture fits in the full data science lifecycle. We will discuss the different steps it will take to get an ML project from the ideation stage to production and the challenges faced by organizations, such as use case identification, data quality issues, and shortage of ML talent when implementing an ML initiative. Finally, we will finish the chapter by briefly discussing the core focus areas of ML solutions architecture, including system architecture, workflow automation, and security and compliance.

In this chapter, we are going to cover the following main topics:

  • ML versus traditional software
  • The ML lifecycle and its key challenges
  • What is ML solutions architecture, and where does it fit in the overall lifecycle?

Upon completing this chapter, you will understand the role of an ML solutions architect and what business and technology areas you need to focus on to support end-to-end ML initiatives. The intent of this chapter is to offer a fundamental introduction to the ML lifecycle for those in the early stages of their exploration in the field. Experienced ML practitioners may wish to skip this foundational overview and proceed directly to more advanced content.

The more advanced section commences in Chapter 4; however, many technical practitioners may find Chapter 2 helpful, as numerous technical practitioners often need more business understanding of where ML can be applied in different businesses and workflows. Additionally, Chapter 3, could prove beneficial for certain practitioners, as it provides an introduction to ML algorithms for those new to this topic and can also serve as a refresher for those practicing these concepts regularly.

You have been reading a chapter from
The Machine Learning Solutions Architect Handbook - Second Edition
Published in: Apr 2024
Publisher: Packt
ISBN-13: 9781805122500
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime