Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Stacking multiple LSTM Layers


Just like we can increase the depth of neural networks or CNNs, we can increase the depth of RNN networks. In this recipe we apply a three layer deep LSTM to improve our Shakespeare language generation.

Getting ready

We can increase the depth of recurrent neural networks by stacking them on top of each other. Essentially, we will be taking the target outputs and feeding them into another network.To get an idea of how this might work for just two layers, see the following figure:

Figure 5: In the preceding figures, we have extended the one-layer RNNs to have two layers. For the original one-layer versions, see the figures in the prior chapter introduction.

TensorFlow allows easy implementation of multiple layers with a MultiRNNCell() function that accepts a list of RNN cells.With this behavior, it is easy to create a multi-layer RNN from one cell in Python with MultiRNNCell([rnn_cell]*num_layers).

For this recipe, we will perform the same Shakespeare prediction that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image