Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Solving a System of ODEs

TensorFlow can be used for many algorithmic implementations and procedures. A great example of TensorFlow's versatility is implementing an ODE solver. Solving an ODE numerically is a iterative procedure that can be easily described in a computational graph. For this recipe, we will solve the Lotka-Volterra predator-prey system.

Getting ready

This recipe will illustrate how to solve a system of ordinary differential equations (ODEs). We can use similar methods to the previous two sections to update values as we iterate through and solve an ODE system.

The ODE system we will consider is the famous Lotka-Volterra predator-prey system. This system shows how a predator-prey system can be oscillating, given specific parameters.

The Lotka-Volterra system was published in a paper in 1920 (see also 1). We will use similar parameters to show that an oscillating system can occur. Here is the system represented in a mathematically discrete way:

Getting ready
Getting ready

Here, X is the prey and Y will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image