Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Geeks

You're reading from   Python for Geeks Build production-ready applications using advanced Python concepts and industry best practices

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781801070119
Length 546 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Muhammad Asif Muhammad Asif
Author Profile Icon Muhammad Asif
Muhammad Asif
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Python, beyond the Basics
2. Chapter 1: Optimal Python Development Life Cycle FREE CHAPTER 3. Chapter 2: Using Modularization to Handle Complex Projects 4. Chapter 3: Advanced Object-Oriented Python Programming 5. Section 2: Advanced Programming Concepts
6. Chapter 4: Python Libraries for Advanced Programming 7. Chapter 5: Testing and Automation with Python 8. Chapter 6: Advanced Tips and Tricks in Python 9. Section 3: Scaling beyond a Single Thread
10. Chapter 7: Multiprocessing, Multithreading, and Asynchronous Programming 11. Chapter 8: Scaling out Python Using Clusters 12. Chapter 9: Python Programming for the Cloud 13. Section 4: Using Python for Web, Cloud, and Network Use Cases
14. Chapter 10: Using Python for Web Development and REST API 15. Chapter 11: Using Python for Microservices Development 16. Chapter 12: Building Serverless Functions using Python 17. Chapter 13: Python and Machine Learning 18. Chapter 14: Using Python for Network Automation 19. Other Books You May Enjoy

Introducing RDDs

The RDD is the core data structure in Apache Spark. This data structure is not only a distributed collection of objects but is also partitioned in such a way that each dataset can be processed and computed on different nodes of a cluster. This makes the RDD a core element of distributed data processing. Moreover, an RDD object is resilient in the sense that it is fault-tolerant and the framework can rebuild the data in the case of a failure. When we create an RDD object, the master node replicates the RDD object to multiple executors or worker nodes. If any executor process or worker node fails, the master node detects the failure and enables an executor process on another node to take over the execution. The new executor node will already have a copy of the RDD object, and it can start the execution immediately. Any data processed by the original executor node before failing will be lost data that will be computed again by the new executor node.

In the next subsections...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime