Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning Cookbook

You're reading from   Python Deep Learning Cookbook Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781787125193
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Indra den Bakker Indra den Bakker
Author Profile Icon Indra den Bakker
Indra den Bakker
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks 2. Feed-Forward Neural Networks FREE CHAPTER 3. Convolutional Neural Networks 4. Recurrent Neural Networks 5. Reinforcement Learning 6. Generative Adversarial Networks 7. Computer Vision 8. Natural Language Processing 9. Speech Recognition and Video Analysis 10. Time Series and Structured Data 11. Game Playing Agents and Robotics 12. Hyperparameter Selection, Tuning, and Neural Network Learning 13. Network Internals 14. Pretrained Models

Building efficient models with MXNet

The MXNet deep learning framework allows you to build efficient deep learning models in Python. Next to Python, it also let you build models in popular languages as R, Scala, and Julia. Apache MXNet is supported by Amazon and Baidu, amongst others. MXNet has proven to be fast in benchmarks and it supports GPU and multi-GPU usages. By using lazy evaluation, MXNet is able to automatically execute operations in parallel. Furthermore, the MXNet frameworks uses a symbolic interface, called Symbol. This simplifies building neural network architectures.

How to do it...

  1. To install MXNet on Ubuntu with GPU support, we can use the following command in the terminal:
pip install mxnet-cu80==0.11.0

For other platforms and non-GPU support, have a look at https://mxnet.incubator.apache.org/get_started/install.html.

  1. Next, we are ready to import mxnet in our Python environment:
import mxnet as mx
  1. We create some simple dummy data that we assign to the GPU and CPU:
import numpy as np
x_input = mx.nd.empty((1, 5), mx.gpu())
x_input[:] = np.array([[1,2,3,4,5]], np.float32)

y_input = mx.nd.empty((1, 5), mx.cpu())
y_input[:] = np.array([[10, 15, 20, 22.5, 25]], np.float32)
  1. We can easily copy and adjust the data. Where possible MXNet will automatically execute operations in parallel:
x_input
w_input = x_input
z_input = x_input.copyto(mx.cpu())
x_input += 1
w_input /= 2
z_input *= 2
  1. We can print the output as follows:
print(x_input.asnumpy())
print(w_input.asnumpy())
print(z_input.asnumpy())
  1. If we want to feed our data to a model, we should create an iterator first:
batch_size = 1
train_iter = mx.io.NDArrayIter(x_input, y_input, batch_size, shuffle=True, data_name='input', label_name='target')
  1. Next, we can create the symbols for our model:
X = mx.sym.Variable('input')
Y = mx.symbol.Variable('target')
fc1 = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 5)
lin_reg = mx.sym.LinearRegressionOutput(data=fc1, label=Y, name="lin_reg")
  1. Before we can start training, we need to define our model:
model = mx.mod.Module(
symbol = lin_reg,
data_names=['input'],
label_names = ['target']
)
  1. Let's start training:
model.fit(train_iter,
optimizer_params={'learning_rate':0.01, 'momentum': 0.9},
num_epoch=100,
batch_end_callback = mx.callback.Speedometer(batch_size, 2))
  1. To use the trained model for prediction we:
model.predict(train_iter).asnumpy()
We've shortly introduced the MXNet framework. In this introduction, we've demonstrated how easily one can assign variables and computations to a CPU or GPU and how to use the Symbol interface. However, there is much more to explore and the MXNet is a powerful framework for building flexible and efficient deep learning models.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image