Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Production-Ready Applied Deep Learning

You're reading from   Production-Ready Applied Deep Learning Learn how to construct and deploy complex models in PyTorch and TensorFlow deep learning frameworks

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781803243665
Length 322 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (3):
Arrow left icon
Lenin Mookiah Lenin Mookiah
Author Profile Icon Lenin Mookiah
Lenin Mookiah
Tomasz Palczewski Tomasz Palczewski
Author Profile Icon Tomasz Palczewski
Tomasz Palczewski
Jaejun (Brandon) Lee Jaejun (Brandon) Lee
Author Profile Icon Jaejun (Brandon) Lee
Jaejun (Brandon) Lee
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 – Building a Minimum Viable Product
2. Chapter 1: Effective Planning of Deep Learning-Driven Projects FREE CHAPTER 3. Chapter 2: Data Preparation for Deep Learning Projects 4. Chapter 3: Developing a Powerful Deep Learning Model 5. Chapter 4: Experiment Tracking, Model Management, and Dataset Versioning 6. Part 2 – Building a Fully Featured Product
7. Chapter 5: Data Preparation in the Cloud 8. Chapter 6: Efficient Model Training 9. Chapter 7: Revealing the Secret of Deep Learning Models 10. Part 3 – Deployment and Maintenance
11. Chapter 8: Simplifying Deep Learning Model Deployment 12. Chapter 9: Scaling a Deep Learning Pipeline 13. Chapter 10: Improving Inference Efficiency 14. Chapter 11: Deep Learning on Mobile Devices 15. Chapter 12: Monitoring Deep Learning Endpoints in Production 16. Chapter 13: Reviewing the Completed Deep Learning Project 17. Index 18. Other Books You May Enjoy

What is DL?

It has only been a decade since DL emerged but it has rapidly started playing an important role in our daily lives. Within the field of artificial intelligence (AI), a popular set of methods categorized as machine learning (ML) exists. By extracting meaningful patterns from historical data, the goal of ML is to build a model that makes sensible predictions and decisions for newly collected data. DL is an ML technique that exploits artificial neural networks (ANNs) to capture a given pattern. Figure 1.1 presents the key components of the AI evolution that started around 1950s, with Alan Turing conducting discussions about intelligent machines, among other godfathers of the field. While various ML algorithms have been introduced sporadically since the advent of AI, it actually took another decades for the field to bloom. Similarly, it has only been about a decade since DL has became the main stream because many of the algorithms in this field require extensive computational power.

Figure 1.1 – A history of AI

Figure 1.1 – A history of AI

As shown in Figure 1.2, the key advantage of DL comes from ANNs, which enable the automatic selection of necessary features. Similar to the way that human brains are structured, ANNs are also made up of components called neurons. A group of neurons forms a layer and multiple layers are linked together to form a network. This kind of architecture can be understood as multiple steps of nested instructions. As the input data passes through the network, each neuron extracts different information, and the model is trained to select the most relevant features for the given task. Considering the role of neurons as building blocks for pattern recognition, deeper networks generally lead to greater performance, as they learn the details better:

Figure 1.2 – The difference between ML and DL

Figure 1.2 – The difference between ML and DL

While typical ML techniques require features to be manually selected, DL learns to select important features on its own. Therefore, it can potentially be adapted to a broader range of problems. However, this advantage does not come for free. In order to train a DL model properly, the datasets for training need to be large and diverse enough, which leads to an increase in training time. Interestingly, graphics processing unit (GPU) has played a major role in reducing the training time. While a central processing unit (CPU) demonstrates its effectiveness in carrying out complex computations with its broader instruction sets, a GPU is more suitable for processing simpler but larger computations with its massive parallelism. By exploiting such an advantage in the matrix multiplications that the DL model heavily depends on, GPU has become a critical component within DL.

As we are still in the early stages of the AI era, chip technology is evolving continuously, and it is not yet clear how these technologies will change in the future. It is worth mentioning that new designs come from start-ups as well as big tech companies. This ongoing race clearly shows that more and more products and services based on AI will be introduced. Considering the growth in the market and job opportunities, we believe that it is a great time to learn about DL.

Things to remember

a. DL is an ML technique that exploits ANNs for pattern recognition.

b. DL is highly flexible because it selects the most relevant features automatically for the given task throughout training.

c. GPUs can speed up DL model training with its massive parallelism.

Now that we understand what DL is at a high level, we will describe how it shapes our daily lives in the next section.

You have been reading a chapter from
Production-Ready Applied Deep Learning
Published in: Aug 2022
Publisher: Packt
ISBN-13: 9781803243665
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime