Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Principles of Data Science

You're reading from   Principles of Data Science Mathematical techniques and theory to succeed in data-driven industries

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781785887918
Length 388 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. How to Sound Like a Data Scientist FREE CHAPTER 2. Types of Data 3. The Five Steps of Data Science 4. Basic Mathematics 5. Impossible or Improbable – A Gentle Introduction to Probability 6. Advanced Probability 7. Basic Statistics 8. Advanced Statistics 9. Communicating Data 10. How to Tell If Your Toaster Is Learning – Machine Learning Essentials 11. Predictions Don't Grow on Trees – or Do They? 12. Beyond the Essentials 13. Case Studies Index

Probability, odds, and log odds

We are familiar with the basic concept of probability in that the probability of an event occurring can be simply modeled as the number of ways the event can occur divided by all the possible outcomes. For example, if, out of 3,000 people who walked into a store, 1,000 actually bought something, then we could say that the probability of a single person buying an item is as shown:

Probability, odds, and log odds

However, we also have a related concept, called odds. The odds of an outcome occurring is the ratio of the number of ways that the outcome occurs divided by every other possible outcome instead of all possible outcomes. In the same example, the odds of a person buying something would be as follows:

Probability, odds, and log odds

This means that for every customer you convert, you will not convert two customers. These concepts are so related, there is even a formula to get from one to the other. We have that:

Probability, odds, and log odds

Let's check this with our example, as illustrated:

Probability, odds, and log odds

It checks out!

Let's use Python to make a table...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image