Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Neural Network Programming with TensorFlow

You're reading from   Neural Network Programming with TensorFlow Unleash the power of TensorFlow to train efficient neural networks

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781788390392
Length 274 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Manpreet Singh Ghotra Manpreet Singh Ghotra
Author Profile Icon Manpreet Singh Ghotra
Manpreet Singh Ghotra
Rajdeep Dua Rajdeep Dua
Author Profile Icon Rajdeep Dua
Rajdeep Dua
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Maths for Neural Networks FREE CHAPTER 2. Deep Feedforward Networks 3. Optimization for Neural Networks 4. Convolutional Neural Networks 5. Recurrent Neural Networks 6. Generative Models 7. Deep Belief Networking 8. Autoencoders 9. Research in Neural Networks 10. Getting started with TensorFlow

Classifying the NotMNIST dataset with a DBN


Let's look at the NotMNIST dataset, which we explored in Chapter 2, Deep Feedforward Networks, in the Implementing feedforward networks section with images, and see how our DBN works for that dataset.

We will leverage the same pickle file, notMNIST.pickle, created in Chapter 2, Deep Feedforward Networks. The initialization parameters and imports are listed here:

import tensorflow as tf
import numpy as np
import cPickle as pickle

from common.models.boltzmann import dbn
from common.utils import datasets, utilities


flags = tf.app.flags
FLAGS = flags.FLAGS
pickle_file = '../notMNIST.pickle'

image_size = 28
num_of_labels = 10

RELU = 'RELU'
RELU6 = 'RELU6'
CRELU = 'CRELU'
SIGMOID = 'SIGMOID'
ELU = 'ELU'
SOFTPLUS = 'SOFTPLUS'

Implementation remains more or less similar to the MNIST dataset. The main implementation listing is given here:

if __name__ == '__main__':
    utilities.random_seed_np_tf(-1)
    with open(pickle_file, 'rb') as f:
        save...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image