Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Text Mining with R

You're reading from   Mastering Text Mining with R Extract and recognize your text data

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781783551811
Length 258 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
KUMAR ASHISH KUMAR ASHISH
Author Profile Icon KUMAR ASHISH
KUMAR ASHISH
Arrow right icon
View More author details
Toc

Dimensionality reduction

Complex and noisy characteristics of textual data with high dimensions can be handled by dimensionality reduction techniques. These techniques reduce the dimension of the textual data while still preserving its underlying statistics. Though the dimensions are reduced, it is important to preserve the inter-document relationships. The idea is to have minimum number of dimensions, which can preserve the intrinsic dimensionality of the data.

A textual collection is mostly represented in the form of a term document matrix wherein we have the importance of each term in a document. The dimensionality of such a collection increases with the number of unique terms. If we were to suggest the simplest possible dimensionality reduction method, that would be to specify the limit or boundary on the distribution of different terms in the collection. Any term that occurs with a significantly high frequency is not going to be informative for us, and the barely present terms can undoubtedly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime