Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling to solve all your data analysis problems

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784393908
Length 452 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introducing Machine Learning 2. Managing and Understanding Data FREE CHAPTER 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Index

Chapter 1. Introducing Machine Learning

If science fiction stories are to be believed, the invention of artificial intelligence inevitably leads to apocalyptic wars between machines and their makers. In the early stages, computers are taught to play simple games of tic-tac-toe and chess. Later, machines are given control of traffic lights and communications, followed by military drones and missiles. The machines' evolution takes an ominous turn once the computers become sentient and learn how to teach themselves. Having no more need for human programmers, humankind is then "deleted."

Thankfully, at the time of this writing, machines still require user input.

Though your impressions of machine learning may be colored by these mass media depictions, today's algorithms are too application-specific to pose any danger of becoming self-aware. The goal of today's machine learning is not to create an artificial brain, but rather to assist us in making sense of the world's massive data stores.

Putting popular misconceptions aside, by the end of this chapter, you will gain a more nuanced understanding of machine learning. You also will be introduced to the fundamental concepts that define and differentiate the most commonly used machine learning approaches.

You will learn:

  • The origins and practical applications of machine learning
  • How computers turn data into knowledge and action
  • How to match a machine learning algorithm to your data

The field of machine learning provides a set of algorithms that transform data into actionable knowledge. Keep reading to see how easy it is to use R to start applying machine learning to real-world problems.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime