Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for the Web

You're reading from   Machine Learning for the Web Gaining insight and intelligence from the internet with Python

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781785886607
Length 298 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Andrea Isoni Andrea Isoni
Author Profile Icon Andrea Isoni
Andrea Isoni
Steve Essinger Steve Essinger
Author Profile Icon Steve Essinger
Steve Essinger
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Practical Machine Learning Using Python FREE CHAPTER 2. Unsupervised Machine Learning 3. Supervised Machine Learning 4. Web Mining Techniques 5. Recommendation Systems 6. Getting Started with Django 7. Movie Recommendation System Web Application 8. Sentiment Analyser Application for Movie Reviews Index

Log-likelihood ratios recommendation system method


The log-likelihood ratio (LLR) is a measure of how two events A and B are unlikely to be independent but occur together more than by chance (more than the single event frequency). In other words, the LLR indicates where a significant co-occurrence might exist between two events A and B with a frequency higher than a normal distribution (over the two events variables) would predict.

It has been shown by Ted Dunning (http://tdunning.blogspot.it/2008/03/surprise-and-coincidence.html) that the LLR can be expressed based on binomial distributions for events A and B using a matrix k with the following entries:

 

A

Not A

B

k11

k12

Not B

k21

k22

Here, and is the Shannon entropy that measures the information contained in the vector p.

Note: is also called the Mutual Information (MI) of the two event variables A and B, measuring how the occurrence of the two events depend on each other.

This test is also called G2, and it has been proven effective...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image