Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Streaming Data with Python

You're reading from   Machine Learning for Streaming Data with Python Rapidly build practical online machine learning solutions using River and other top key frameworks

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803248363
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joos Korstanje Joos Korstanje
Author Profile Icon Joos Korstanje
Joos Korstanje
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Introduction and Core Concepts of Streaming Data
2. Chapter 1: An Introduction to Streaming Data FREE CHAPTER 3. Chapter 2: Architectures for Streaming and Real-Time Machine Learning 4. Chapter 3: Data Analysis on Streaming Data 5. Part 2: Exploring Use Cases for Data Streaming
6. Chapter 4: Online Learning with River 7. Chapter 5: Online Anomaly Detection 8. Chapter 6: Online Classification 9. Chapter 7: Online Regression 10. Chapter 8: Reinforcement Learning 11. Part 3: Advanced Concepts and Best Practices around Streaming Data
12. Chapter 9: Drift and Drift Detection 13. Chapter 10: Feature Transformation and Scaling 14. Chapter 11: Catastrophic Forgetting 15. Chapter 12: Conclusion and Best Practices 16. Other Books You May Enjoy

Summary

In this introductory chapter on streaming data and streaming analytics, you have first seen some definitions of what streaming data is, and how it is opposed to batch data processing. In streaming data, you need to work with a continuous stream of data, and more traditional (batch) data science solutions need to be adapted to make things work with this newer and more demanding method of data treatment.

You have seen a number of example use cases, and you should now understand that there can be much-added value for businesses and advanced technology use cases to have data science and analytics calculated on the fly rather than wait for a fixed moment. Real-time insights can be a game-changer, and autonomous machine learning solutions often need real-time decision capabilities.

You have seen an example in which a data stream was created and a simple real-time alerting system was developed. In the next chapter, you will get a much deeper introduction to a number of streaming solutions. In practice, data scientists and analysts will generally not be responsible for putting streaming data ingestion in place, but they will be constrained by the limits of those systems. It is, therefore, important to have a good understanding of streaming and real-time architecture: this will be the goal of the next chapter.

You have been reading a chapter from
Machine Learning for Streaming Data with Python
Published in: Jul 2022
Publisher: Packt
ISBN-13: 9781803248363
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image