Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python-Second Edition

You're reading from   Learning Geospatial Analysis with Python-Second Edition An effective guide to geographic information systems and remote sensing analysis using Python 3

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher Packt
ISBN-13 9781783552429
Length 394 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Learning Geospatial Analysis with Python FREE CHAPTER 2. Geospatial Data 3. The Geospatial Technology Landscape 4. Geospatial Python Toolbox 5. Python and Geographic Information Systems 6. Python and Remote Sensing 7. Python and Elevation Data 8. Advanced Geospatial Python Modeling 9. Real-Time Data 10. Putting It All Together Index

Using GPS data


The most common type of GPS data these days is the Garmin GPX format. We covered this XML format in Chapter 4, Geospatial Python Toolbox, which has become an unofficial industry standard. Because it is an XML format, all of the well documented rules of XML apply. However, there is another type of GPS data that pre-dates XML and GPX called National Marine Electronics Association (NMEA). These data are ASCII text sentences designed to be streamed. You occasionally bump into this format from time to time because even though it is older and esoteric, it is still very much alive and well especially to communicate ship locations via the Automated Identification System (AIS), which tracks ships globally. But as usual, you have a good option in pure Python. The pynmea module is available on PyPI.

Take a look at the following small sample of NMEA sentences:

$GPRMC,012417.859,V,1856.599,N,15145.602,W,12.0,7.27,020713,,E*4F
$GPGGA,012418.859,1856.599,N,15145.602,W,0,00,,,M,,M,,*54
$GPGLL...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image