Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python-Second Edition

You're reading from   Learning Geospatial Analysis with Python-Second Edition An effective guide to geographic information systems and remote sensing analysis using Python 3

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher Packt
ISBN-13 9781783552429
Length 394 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Learning Geospatial Analysis with Python FREE CHAPTER 2. Geospatial Data 3. The Geospatial Technology Landscape 4. Geospatial Python Toolbox 5. Python and Geographic Information Systems 6. Python and Remote Sensing 7. Python and Elevation Data 8. Advanced Geospatial Python Modeling 9. Real-Time Data 10. Putting It All Together Index

Getting the bounding box

We're going to need the bounding box of the route to download data from other geospatial services. When we download data, we want the dataset to cover more area than the route so that the map is not cropped too closely around the edges of the route. So, we'll buffer the bounding box by 20% on each side. Finally, we'll need the data in Eastings and Northings to work with the WMS service. Eastings and Northings are the x and y coordinates of points in the Cartesian coordinate system in meters. They are commonly used in the UTM coordinate system:

# Find Lat/Long bounding box of the route
minx = min(lons)

miny = min(lats)
maxx = max(lons)
maxy = max(lats)

# Buffer the GPX bounding box by 20%
# so the track isn't too close to

# the edge of the image.
xdist = maxx - minx
ydist = maxy - miny
x20 = xdist * .2
y20 = ydist * .2
# 10% expansion on each side
minx -= x20
miny -= y20
maxx += x20
maxy += y20

# Store the bounding box in a single
# variable...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image