We can see that each feature in our observation seems to be on a different scale. Some values range in the hundreds, while others are between 1 and 12, or even binary. While neural networks may still ingest unscaled features, it almost exclusively prefers to deal with features on the same scale. In practice, a network can learn from heterogeneously scaled features, but it may take much longer to do so without any guarantee of finding an ideal minimum on the loss landscape. To allow our network to learn in an improved way for this dataset, we must homogenize our data through the process of feature-wise normalization. We can achieve this by subtracting the feature-specific mean and dividing it by the feature-specific standard deviation for each feature in our dataset. Note that in live-deployed models (for the stock exchange, for example), such a scaling...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand