So, let's try to better understand how the different parts of the GAN work together to generate synthetic data. Consider the parameterized function (G) (you know, the kind we usually approximate using a neural network). This will be our generator, which samples its input vectors (z) from some latent probability distribution, and transforms them into synthetic images. Our discriminator network (D), will then be presented with some synthetic images produced by our generator, mixed among real images, and attempt to classify real from forgery. Hence, our discriminator network is simply a binary classifier, equipped with something like a sigmoid activation function. Ideally, we want the discriminator to output high values when presented with real images, and low values when presented with generated fakes. Conversely, we want our generator network to try...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand