Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Image Processing with Python

You're reading from   Hands-On Image Processing with Python Expert techniques for advanced image analysis and effective interpretation of image data

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789343731
Length 492 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sandipan Dey Sandipan Dey
Author Profile Icon Sandipan Dey
Sandipan Dey
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
1. Getting Started with Image Processing 2. Sampling, Fourier Transform, and Convolution FREE CHAPTER 3. Convolution and Frequency Domain Filtering 4. Image Enhancement 5. Image Enhancement Using Derivatives 6. Morphological Image Processing 7. Extracting Image Features and Descriptors 8. Image Segmentation 9. Classical Machine Learning Methods in Image Processing 10. Deep Learning in Image Processing - Image Classification 11. Deep Learning in Image Processing - Object Detection, and more 12. Additional Problems in Image Processing 1. Other Books You May Enjoy Index

Active contours, morphological snakes, and GrabCut algorithms


In this section, we will discuss some more sophisticated segmentation algorithms and demonstrate them with scikit-image or python-opencv (cv2) library functions. We will start with segmentation using the active contours. 

Active contours

The active contour model (also known as snakes) is a framework that fits open or closed splines to lines or edges in an image. A snake is an energy-minimizing, deformable spline influenced by constraint, image, and internal forces. Hence, it works by minimizing an energy that is partially defined by the image and partially by the spline's shape, length, and smoothness. The constraint and image forces pull the snake toward object contours and internal forces resist the deformation. The algorithm accepts an initial snake (around the object of interest) and to fit the closed contour to the object of interest, it shrinks/expands. The minimization is done explicitly in the image energy and implicitly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime