Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Exploratory Data Analysis with Python

You're reading from   Hands-On Exploratory Data Analysis with Python Perform EDA techniques to understand, summarize, and investigate your data

Arrow left icon
Product type Paperback
Published in Mar 2020
Publisher Packt
ISBN-13 9781789537253
Length 352 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Suresh Kumar Mukhiya Suresh Kumar Mukhiya
Author Profile Icon Suresh Kumar Mukhiya
Suresh Kumar Mukhiya
Usman Ahmed Usman Ahmed
Author Profile Icon Usman Ahmed
Usman Ahmed
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: The Fundamentals of EDA
2. Exploratory Data Analysis Fundamentals FREE CHAPTER 3. Visual Aids for EDA 4. EDA with Personal Email 5. Data Transformation 6. Section 2: Descriptive Statistics
7. Descriptive Statistics 8. Grouping Datasets 9. Correlation 10. Time Series Analysis 11. Section 3: Model Development and Evaluation
12. Hypothesis Testing and Regression 13. Model Development and Evaluation 14. EDA on Wine Quality Data Analysis 15. Other Books You May Enjoy Appendix

Comparing EDA with classical and Bayesian analysis

There are several approaches to data analysis. The most popular ones that are relevant to this book are the following:

  • Classical data analysis: For the classical data analysis approach, the problem definition and data collection step are followed by model development, which is followed by analysis and result communication.
  • Exploratory data analysis approach: For the EDA approach, it follows the same approach as classical data analysis except the model imposition and the data analysis steps are swapped. The main focus is on the data, its structure, outliers, models, and visualizations. Generally, in EDA, we do not impose any deterministic or probabilistic models on the data.
  • Bayesian data analysis approach: The Bayesian approach incorporates prior probability distribution knowledge into the analysis steps as shown in the following diagram. Well, simply put, prior probability distribution of any quantity expresses the belief about that particular quantity before considering some evidence. Are you still lost with the term prior probability distribution? Andrew Gelman has a very descriptive paper about prior probability distribution. The following diagram shows three different approaches for data analysis illustrating the difference in their execution steps:

Data analysts and data scientists freely mix steps mentioned in the preceding approaches to get meaningful insights from the data. In addition to that, it is essentially difficult to judge or estimate which model is best for data analysis. All of them have their paradigms and are suitable for different types of data analysis.

You have been reading a chapter from
Hands-On Exploratory Data Analysis with Python
Published in: Mar 2020
Publisher: Packt
ISBN-13: 9781789537253
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime