Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning with R

You're reading from   Hands-On Deep Learning with R A practical guide to designing, building, and improving neural network models using R

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781788996839
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Rodger Devine Rodger Devine
Author Profile Icon Rodger Devine
Rodger Devine
Michael Pawlus Michael Pawlus
Author Profile Icon Michael Pawlus
Michael Pawlus
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Deep Learning Basics
2. Machine Learning Basics FREE CHAPTER 3. Setting Up R for Deep Learning 4. Artificial Neural Networks 5. Section 2: Deep Learning Applications
6. CNNs for Image Recognition 7. Multilayer Perceptron for Signal Detection 8. Neural Collaborative Filtering Using Embeddings 9. Deep Learning for Natural Language Processing 10. Long Short-Term Memory Networks for Stock Forecasting 11. Generative Adversarial Networks for Faces 12. Section 3: Reinforcement Learning
13. Reinforcement Learning for Gaming 14. Deep Q-Learning for Maze Solving 15. Other Books You May Enjoy

Evaluating model results

We only know whether a model is successful if we can measure it, and it is worthwhile taking a moment to remember which metrics to use in which scenarios. Take, for example, a credit card fraud dataset where there is a large imbalance in the target variable because there will only be a, relatively, few cases of fraud among many non-fraudulent cases.

If we use a metric that just measures the percentage of the target variable that we predict successfully, then we will not be evaluating our model in a very helpful way. In this case, to keep the math simple, let's imagine we have 10,000 cases and only 10 of them are fraudulent accounts. If we predict that all cases are not fraudulent, then we will have 99.9% accuracy. This is very accurate, but it is not very helpful. Here is a review of the different metrics and when to use them.

...
You have been reading a chapter from
Hands-On Deep Learning with R
Published in: Apr 2020
Publisher: Packt
ISBN-13: 9781788996839
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime