Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Hadoop Real-World Solutions Cookbook- Second Edition
Hadoop Real-World Solutions Cookbook- Second Edition

Hadoop Real-World Solutions Cookbook- Second Edition: Over 90 hands-on recipes to help you learn and master the intricacies of Apache Hadoop 2.X, YARN, Hive, Pig, Oozie, Flume, Sqoop, Apache Spark, and Mahout , Second Edition

eBook
$9.99 $47.99
Paperback
$60.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Hadoop Real-World Solutions Cookbook- Second Edition

Chapter 2. Exploring HDFS

In this chapter, we'll take a look at the following recipes:

  • Loading data from a local machine to HDFS
  • Exporting HDFS data to a local machine
  • Changing the replication factor of an existing file in HDFS
  • Setting the HDFS block size for all the files in a cluster
  • Setting the HDFS block size for a specific file in a cluster
  • Enabling transparent encryption for HDFS
  • Importing data from another Hadoop cluster
  • Recycling deleted data from trash to HDFS
  • Saving compressed data in HDFS

Introduction

In the previous chapter, we discussed the installation and configuration details of a Hadoop cluster. In this chapter, we are going to explore the details of HDFS. As we know, Hadoop has two important components:

  • Storage: This includes HDFS
  • Processing: This includes Map Reduce

HDFS takes care of the storage part of Hadoop. So, let's explore the internals of HDFS through various recipes.

Loading data from a local machine to HDFS

In this recipe, we are going to load data from a local machine's disk to HDFS.

Getting ready

To perform this recipe, you should have an already Hadoop running cluster.

How to do it...

Performing this recipe is as simple as copying data from one folder to another. There are a couple of ways to copy data from the local machine to HDFS.

  • Using the copyFromLocal command
    • To copy the file on HDFS, let's first create a directory on HDFS and then copy the file. Here are the commands to do this:
      hadoop fs -mkdir /mydir1
      hadoop fs -copyFromLocal /usr/local/hadoop/LICENSE.txt /mydir1
      
  • Using the put command
    • We will first create the directory, and then put the local file in HDFS:
      hadoop fs -mkdir /mydir2
      hadoop fs -put /usr/local/hadoop/LICENSE.txt /mydir2
      

You can validate that the files have been copied to the correct folders by listing the files:

hadoop fs -ls /mydir1
hadoop fs -ls /mydir2

How it works...

When you use HDFS copyFromLocal or the put command, the...

Exporting HDFS data to a local machine

In this recipe, we are going to export/copy data from HDFS to the local machine.

Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

Performing this recipe is as simple as copying data from one folder to the other. There are a couple of ways in which you can export data from HDFS to the local machine.

  • Using the copyToLocal command, you'll get this code:
    hadoop fs -copyToLocal /mydir1/LICENSE.txt /home/ubuntu
    
  • Using the get command, you'll get this code:
    hadoop fs -get/mydir1/LICENSE.txt /home/ubuntu
    

How it works...

When you use HDFS copyToLocal or the get command, the following things occur:

  1. First of all, the client contacts NameNode because it needs a specific file in HDFS.
  2. NameNode then checks whether such a file exists in its FSImage. If the file is not present, the error code is returned to the client.
  3. If the file exists, NameNode checks the metadata for blocks and replica placements in DataNodes...

Changing the replication factor of an existing file in HDFS

In this recipe, we are going to take a look at how to change the replication factor of a file in HDFS. The default replication factor is 3.

Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

Sometimes. there might be a need to increase or decrease the replication factor of a specific file in HDFS. In this case, we'll use the setrep command.

This is how you can use the command:

hadoop fs -setrep [-R] [-w] <noOfReplicas><path> ...

In this command, a path can either be a file or directory; if its a directory, then it recursively sets the replication factor for all replicas.

  • The w option flags the command and should wait until the replication is complete
  • The r option is accepted for backward compatibility

First, let's check the replication factor of the file we copied to HDFS in the previous recipe:

hadoop fs -ls /mydir1/LICENSE.txt
-rw-r--r--   3 ubuntu supergroup  ...

Setting the HDFS block size for all the files in a cluster

In this recipe, we are going to take a look at how to set a block size at the cluster level.

Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

The HDFS block size is configurable for all files in the cluster or for a single file as well. To change the block size at the cluster level itself, we need to modify the hdfs-site.xml file.

By default, the HDFS block size is 128MB. In case we want to modify this, we need to update this property, as shown in the following code. This property changes the default block size to 64MB:

<property>
<name>dfs.block.size</name>
    <value>67108864</value>
    <description>HDFS Block size</description>
</property>

If you have a multi-node Hadoop cluster, you should update this file in the nodes, that is, NameNode and DataNode. Make sure you save these changes and restart the HDFS daemons:

/usr/local/hadoop...

Introduction


In the previous chapter, we discussed the installation and configuration details of a Hadoop cluster. In this chapter, we are going to explore the details of HDFS. As we know, Hadoop has two important components:

  • Storage: This includes HDFS

  • Processing: This includes Map Reduce

HDFS takes care of the storage part of Hadoop. So, let's explore the internals of HDFS through various recipes.

Loading data from a local machine to HDFS


In this recipe, we are going to load data from a local machine's disk to HDFS.

Getting ready

To perform this recipe, you should have an already Hadoop running cluster.

How to do it...

Performing this recipe is as simple as copying data from one folder to another. There are a couple of ways to copy data from the local machine to HDFS.

  • Using the copyFromLocal command

    • To copy the file on HDFS, let's first create a directory on HDFS and then copy the file. Here are the commands to do this:

      hadoop fs -mkdir /mydir1
      hadoop fs -copyFromLocal /usr/local/hadoop/LICENSE.txt /mydir1
      
  • Using the put command

    • We will first create the directory, and then put the local file in HDFS:

      hadoop fs -mkdir /mydir2
      hadoop fs -put /usr/local/hadoop/LICENSE.txt /mydir2
      

You can validate that the files have been copied to the correct folders by listing the files:

hadoop fs -ls /mydir1
hadoop fs -ls /mydir2

How it works...

When you use HDFS copyFromLocal or the put command, the following...

Exporting HDFS data to a local machine


In this recipe, we are going to export/copy data from HDFS to the local machine.

Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

Performing this recipe is as simple as copying data from one folder to the other. There are a couple of ways in which you can export data from HDFS to the local machine.

  • Using the copyToLocal command, you'll get this code:

    hadoop fs -copyToLocal /mydir1/LICENSE.txt /home/ubuntu
    
  • Using the get command, you'll get this code:

    hadoop fs -get/mydir1/LICENSE.txt /home/ubuntu
    

How it works...

When you use HDFS copyToLocal or the get command, the following things occur:

  1. First of all, the client contacts NameNode because it needs a specific file in HDFS.

  2. NameNode then checks whether such a file exists in its FSImage. If the file is not present, the error code is returned to the client.

  3. If the file exists, NameNode checks the metadata for blocks and replica placements in DataNodes.

  4. NameNode...

Changing the replication factor of an existing file in HDFS


In this recipe, we are going to take a look at how to change the replication factor of a file in HDFS. The default replication factor is 3.

Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

Sometimes. there might be a need to increase or decrease the replication factor of a specific file in HDFS. In this case, we'll use the setrep command.

This is how you can use the command:

hadoop fs -setrep [-R] [-w] <noOfReplicas><path> ...

In this command, a path can either be a file or directory; if its a directory, then it recursively sets the replication factor for all replicas.

  • The w option flags the command and should wait until the replication is complete

  • The r option is accepted for backward compatibility

First, let's check the replication factor of the file we copied to HDFS in the previous recipe:

hadoop fs -ls /mydir1/LICENSE.txt
-rw-r--r--   3 ubuntu supergroup      15429 2015...

Setting the HDFS block size for all the files in a cluster


In this recipe, we are going to take a look at how to set a block size at the cluster level.

Getting ready

To perform this recipe, you should already have a running Hadoop cluster.

How to do it...

The HDFS block size is configurable for all files in the cluster or for a single file as well. To change the block size at the cluster level itself, we need to modify the hdfs-site.xml file.

By default, the HDFS block size is 128MB. In case we want to modify this, we need to update this property, as shown in the following code. This property changes the default block size to 64MB:

<property>
<name>dfs.block.size</name>
    <value>67108864</value>
    <description>HDFS Block size</description>
</property>

If you have a multi-node Hadoop cluster, you should update this file in the nodes, that is, NameNode and DataNode. Make sure you save these changes and restart the HDFS daemons:

/usr/local/hadoop...
Left arrow icon Right arrow icon

Key benefits

  • Implement outstanding Machine Learning use cases on your own analytics models and processes.
  • Solutions to common problems when working with the Hadoop ecosystem.
  • Step-by-step implementation of end-to-end big data use cases.

Description

Big data is the current requirement. Most organizations produce huge amount of data every day. With the arrival of Hadoop-like tools, it has become easier for everyone to solve big data problems with great efficiency and at minimal cost. Grasping Machine Learning techniques will help you greatly in building predictive models and using this data to make the right decisions for your organization. Hadoop Real World Solutions Cookbook gives readers insights into learning and mastering big data via recipes. The book not only clarifies most big data tools in the market but also provides best practices for using them. The book provides recipes that are based on the latest versions of Apache Hadoop 2.X, YARN, Hive, Pig, Sqoop, Flume, Apache Spark, Mahout and many more such ecosystem tools. This real-world-solution cookbook is packed with handy recipes you can apply to your own everyday issues. Each chapter provides in-depth recipes that can be referenced easily. This book provides detailed practices on the latest technologies such as YARN and Apache Spark. Readers will be able to consider themselves as big data experts on completion of this book. This guide is an invaluable tutorial if you are planning to implement a big data warehouse for your business.

Who is this book for?

Readers who have a basic knowledge of big data systems and want to advance their knowledge with hands-on recipes.

What you will learn

  • Installing and maintaining Hadoop 2.X cluster and its ecosystem.
  • Write advanced Map Reduce programs and understand design patterns.
  • Advanced Data Analysis using the Hive, Pig, and Map Reduce programs.
  • Import and export data from various sources using Sqoop and Flume.
  • Data storage in various file formats such as Text, Sequential, Parquet, ORC, and RC Files.
  • Machine learning principles with libraries such as Mahout
  • Batch and Stream data processing using Apache Spark

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Mar 31, 2016
Length: 290 pages
Edition : 2nd
Language : English
ISBN-13 : 9781784398002
Vendor :
Apache
Category :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Mar 31, 2016
Length: 290 pages
Edition : 2nd
Language : English
ISBN-13 : 9781784398002
Vendor :
Apache
Category :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 209.97
Hadoop Real-World Solutions Cookbook- Second Edition
$60.99
Hadoop Blueprints
$48.99
Hadoop: Data Processing and Modelling
$99.99
Total $ 209.97 Stars icon
Banner background image

Table of Contents

11 Chapters
1. Getting Started with Hadoop 2.X Chevron down icon Chevron up icon
2. Exploring HDFS Chevron down icon Chevron up icon
3. Mastering Map Reduce Programs Chevron down icon Chevron up icon
4. Data Analysis Using Hive, Pig, and Hbase Chevron down icon Chevron up icon
5. Advanced Data Analysis Using Hive Chevron down icon Chevron up icon
6. Data Import/Export Using Sqoop and Flume Chevron down icon Chevron up icon
7. Automation of Hadoop Tasks Using Oozie Chevron down icon Chevron up icon
8. Machine Learning and Predictive Analytics Using Mahout and R Chevron down icon Chevron up icon
9. Integration with Apache Spark Chevron down icon Chevron up icon
10. Hadoop Use Cases Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(4 Ratings)
5 star 50%
4 star 25%
3 star 25%
2 star 0%
1 star 0%
Amazon Customer Mar 01, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Excellent book with lot of practical examples
Amazon Verified review Amazon
Thakur Jaiveer Singh Jun 09, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good one
Amazon Verified review Amazon
Amazon Customer Jan 21, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Good
Amazon Verified review Amazon
Sudhir Chawla Aug 02, 2016
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
This is an interesting book on Hadoop, which explains the installation part along with how to setup load balancer. Further down it deep dives to explain about HDFS, Map reduce program. A very good aspect of this book is that it allows you to know about various analysis tools like Hive, Pig and Hbase, moverover it goes in more details to explain about data analysis using Hive.Further down are some Import and export tools to onboard data into HDFS.A good book for someone who has basic knowledge of Hadoop and want to enhance it further by using different tools. This book gives a good start to people with experience in Java and Unix environment.Some good points of the book are:- Examples given with very clear explanation.- The author tried to used practical exercises instead of just basics.- Tried to cover many tools and deep-dive into some of the key toolsDemerits :- This book is meant for advance level developers. This is already mentioned in the book to have basic knowledge but I believe it demands more than basic.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.