Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Fast Data Processing with Spark 2

You're reading from   Fast Data Processing with Spark 2 Accelerate your data for rapid insight

Arrow left icon
Product type Paperback
Published in Oct 2016
Publisher Packt
ISBN-13 9781785889271
Length 274 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Krishna Sankar Krishna Sankar
Author Profile Icon Krishna Sankar
Krishna Sankar
Holden Karau Holden Karau
Author Profile Icon Holden Karau
Holden Karau
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Installing Spark and Setting Up Your Cluster FREE CHAPTER 2. Using the Spark Shell 3. Building and Running a Spark Application 4. Creating a SparkSession Object 5. Loading and Saving Data in Spark 6. Manipulating Your RDD 7. Spark 2.0 Concepts 8. Spark SQL 9. Foundations of Datasets/DataFrames – The Proverbial Workhorse for DataScientists 10. Spark with Big Data 11. Machine Learning with Spark ML Pipelines 12. GraphX

Spark topology

This is a good time to talk about the basic mechanics and mechanisms of Spark. We will progressively dig deeper, but for now let's take a quick look at the top level.

Essentially, Spark provides a framework to process the vast amounts of data, be it in gigabytes, terabytes, and occasionally petabytes. The two main ingredients are computation and scale. The size and effectiveness of the problems that we can solve depends on these two factors, that is, the ability to apply complex computations over large amounts of data in a timely fashion. If our monthly runs take 40 days, we have a problem.

The key, of course, is parallelism, massive parallelism to be exact. We can make our computational algorithm tasks work in parallel, that is, instead of doing the steps one after another, we can perform many steps at the same time, or carry out data parallelism. This means that we run the same algorithms over a partitioned Dataset in parallel. In my humble opinion, Spark is extremely effective in applying data parallelism in an elegant framework. As you will see in the rest of this book, the two components are Resilient Distributed Dataset (RDD) and cluster manager. The cluster manager distributes the code and manages the data that is represented in RDDs. RDDs with transformations and actions are the main programming abstractions and present parallelized collections. Behind the scenes, a cluster manager controls the distribution and interaction with RDDs, distributes code, and manages fault-tolerant execution. As you will see later in the book, Spark has more abstractions on RDDs, namely DataFrames and Datasets. These layers make it extremely efficient for a data engineer or a data scientist to work on distributed data. Spark works with three types of cluster managers-standalone, Apache Mesos, and Hadoop YARN. The Spark page at http://spark.apache.org/docs/latest/cluster-overview.html has a lot more details on this. I just gave you a quick introduction here.

Tip

If you have installed Hadoop 2.0, it is recommended to install Spark on YARN. If you have installed Hadoop 1.0, the standalone version is recommended. If you want to try Mesos, you can choose to install Spark on Mesos. Users are not recommended to install both YARN and Mesos.

Refer to the following diagram:

Spark topology

The Spark driver program takes the program classes and hands them over to a cluster manager. The cluster manager, in turn, starts executors in multiple worker nodes, each having a set of tasks. When we ran the example program earlier, all these actions happened transparently on your machine! Later, when we install in a cluster, the examples will run, again transparently, across multiple machines in the cluster. This is the magic of Spark and distributed computing!

You have been reading a chapter from
Fast Data Processing with Spark 2 - Third Edition
Published in: Oct 2016
Publisher: Packt
ISBN-13: 9781785889271
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image