Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Quality in the Age of AI

You're reading from   Data Quality in the Age of AI Building a foundation for AI strategy and data culture

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781805121435
Length 50 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Andrew Jones Andrew Jones
Author Profile Icon Andrew Jones
Andrew Jones
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

1. Data Quality in the Age of AI FREE CHAPTER
2. Executive summary 3. Understanding data quality 4. Unlocking AI’s potential with data 5. Improving data quality at the source 6. Case studies: Positive impact of data quality 7. Cultivating a data culture that values quality 8. Conclusion: Embracing a quality-driven data culture
9. About the author
10. About the technical reviewers
11. Additional reading 12. Other Books You May Enjoy 13. Bibliography

Incentivizing data producers

For data producers to take on the responsibility of providing better quality data—and to do it well—they need to have incentives that align with their work. There are many ways to do this. Every organization that has grown beyond a start-up needs a way of incentivizing multiple teams to work together to build something of value for the business.

One effective approach is a top-down strategy. By aligning strategic objectives that rely on the creation and utilization of high-quality data, organizations can optimize their structure to facilitate collaboration among relevant teams. Additionally, employing key performance indicators (KPIs) and other prioritization methods can ensure that teams are held responsible for their contributions toward achieving this goal.

For example, if you’re tracking data incidents, you could create KPIs around the number of incidents, their severity, and how common the root causes are. While you will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime