Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Clojure for Data Science

You're reading from   Clojure for Data Science Statistics, big data, and machine learning for Clojure programmers

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781784397180
Length 608 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Henry Garner Henry Garner
Author Profile Icon Henry Garner
Henry Garner
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Statistics FREE CHAPTER 2. Inference 3. Correlation 4. Classification 5. Big Data 6. Clustering 7. Recommender Systems 8. Network Analysis 9. Time Series 10. Visualization Index

Mathematical folds with Tesser


We should now understand how to use folds to calculate parallel implementations of simple algorithms. Hopefully, we should also have some appreciation for the ingenuity required to find efficient solutions that will perform the minimum number of iterations over the data.

Fortunately, the Clojure library Tesser (https://github.com/aphyr/tesser) includes implementations for common mathematical folds, including the mean, standard deviation, and covariance. To see how to use Tesser, let's consider the covariance of two fields from the IRS dataset: the salaries and wages, A00200, the unemployment compensation, A02300.

Calculating covariance with Tesser

We encountered covariance in Chapter 3, Correlation, as a measure of how two sequences of data vary together. The formula is reproduced as follows:

A covariance fold is included in tesser.math. In the following code, we'll include tesser.math as m and tesser.core as t:

(defn ex-5-17 []
  (let [data (into [] (load-data...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image