Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Clojure for Data Science

You're reading from   Clojure for Data Science Statistics, big data, and machine learning for Clojure programmers

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781784397180
Length 608 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Henry Garner Henry Garner
Author Profile Icon Henry Garner
Henry Garner
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Statistics FREE CHAPTER 2. Inference 3. Correlation 4. Classification 5. Big Data 6. Clustering 7. Recommender Systems 8. Network Analysis 9. Time Series 10. Visualization Index

Ordinary least squares


In order to optimize the parameters of our linear model, we'd like to devise a cost function, also called a loss function, that quantifies how closely our predictions fit the data. We cannot simply sum up the residuals, positive and negative, because even large residuals will cancel each other out if their signs are in opposite directions.

We could square the values before calculating the sum so that positive and negative residuals both count towards the cost. This also has the effect of penalizing large errors more than smaller errors, but not so much that the largest residual always dominates.

Expressed as an optimization problem, we seek to identify the coefficients that minimize the sum of the residual squares. This is called Ordinary Least Squares (OLS), and the formula to calculate the slope of the regression line using OLS is:

Although this looks more complicated than the previous equations, it's really just the sum of squared residuals divided by the sum of squared...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image