In the previous chapter, we established the fundamental theory of artificial neural networks (ANNs) and how they emulate human brain structure for generating output based on a set of inputs with the help of interconnected nodes. The nodes are arranged in three types of layers: input, hidden, and output. We understood the basic and mathematical concepts of how the input signal is carried through to the output layer and the iterative approach that ANNs take for training weights on neuron connections. Simple neural networks with one or two hidden layers can solve very rudimentary problems. However, in order to meaningfully utilize ANNs for real-world problems, which involve hundreds or thousands of input variables, involve more complex models, and require the models to store more information, we need more complex structures that are realized with large numbers...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand