Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Building autoencoders using Keras


We're now going to move onto something really exciting, building an autoencoder using Keras library. For simplicity, we'll be using the MNIST dataset for the first set of examples. The autoencoder will then generate a latent vector from the input data and recover the input using the decoder. The latent vector in this first example is 16-dim.

Firstly, we're going to implement the autoencoder by building the encoder. Listing 3.2.1 shows the encoder that compresses the MNIST digit into a 16-dim latent vector. The encoder is a stack of two Conv2D. The final stage is a Dense layer with 16 units to generate the latent vector. Figure 3.2.1 shows the architecture model diagram generated by plot_model() which is the same as the text version produced by encoder.summary(). The shape of the output of the last Conv2D is saved to compute the dimensions of the decoder input layer for easy reconstruction of the MNIST image.

The following Listing 3.2.1, shows autoencoder-mnist...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image