Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Summary

This concludes not only the journey inside the multilayer perceptron, but also the introduction of the supervised learning algorithms. In this chapter, you learned:

  • The components and architecture of a neural networks
  • The stages of the training cycle of a backpropagation multilayer perceptron
  • How to implement an MLP from the ground up in Scala
  • The numerous configuration parameters and options to use MLP as a classifier and regression
  • To evaluate the impact of the learning rate and the gradient descent momentum factor on the convergence of the sum of squared errors during training
  • How to apply a multilayer perceptron to the financial analysis of the fluctuation of currencies

The next chapter will introduce the concept of genetic algorithms with a full implementation in Scala. Although, strictly speaking, genetic algorithms do not belong to the family of machine learning algorithms, they play a crucial role in the optimization of nonlinear, nondifferentiable problems and the selection of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image