Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python for Finance Cookbook

You're reading from   Python for Finance Cookbook Over 50 recipes for applying modern Python libraries to financial data analysis

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781789618518
Length 432 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eryk Lewinson Eryk Lewinson
Author Profile Icon Eryk Lewinson
Eryk Lewinson
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Financial Data and Preprocessing 2. Technical Analysis in Python FREE CHAPTER 3. Time Series Modeling 4. Multi-Factor Models 5. Modeling Volatility with GARCH Class Models 6. Monte Carlo Simulations in Finance 7. Asset Allocation in Python 8. Identifying Credit Default with Machine Learning 9. Advanced Machine Learning Models in Finance 10. Deep Learning in Finance 11. Other Books You May Enjoy

Modeling time series with ARIMA class models

ARIMA models are a class of statistical models that are used for analyzing and forecasting time series data. They aim to do so by describing the autocorrelations in the data. ARIMA stands for Autoregressive Integrated Moving Average and is an extension of a simpler ARMA model. The goal of the additional integration component is to ensure stationarity of the series, because, in contrast to the exponential smoothing models, the ARIMA class requires the time series to be stationary. In the next few paragraphs, we briefly go over the building blocks of ARIMA models.

AR (autoregressive) model:

  • This kind of model uses the relationship between an observation and its lagged values.
  • In the financial context, the autoregressive model tries to account for the momentum and mean reversion effects.

I (integration):

  • Integration, in this case,...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime