In this chapter, we will introduce GANs. Just as in autoencoder networks, GANs have a generator and a discriminator network. However, GANs are fundamentally different. They represent an unsupervised learning problem, where the two networks compete, and cooperate with each other at the same time. It is important that the generator and discriminator don't overpower each other. The idea behind GANs is to generate new examples based on training data. Applications can range from generating new handwritten MNIST images to generating music. GANs have received a lot of attention lately because the results of using them are fascinating.Â
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine