Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

Comparing Bottleneck to NumPy functions

Bottleneck is a set of functions inspired by NumPy and SciPy, but written in Cython with high performance in mind. Bottleneck provides separate Cython functions for each combination of array dimensions, axis, and data type. This is not shown to the end user and the limiting factor for Bottleneck is to determine which Cython function to execute. Install Bottleneck as follows:

$ pip install bottleneck

We will compare the execution times for the numpy.median() and scipy.stats.rankdata() functions in relation to their Bottleneck counterparts. It can be useful to determine the Cython function manually before using it in a tight loop or frequently called function. Print the name of the Bottleneck median() function as follows:

func, _ = bn.func.median_selector(a, axis=0)
print "Bottleneck median func name", func

For the rankdata() function, we can do the following:

func, _ = bn.func.rankdata_selector(a, axis=0)
print "Bottleneck rankdata func...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime