Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning on Databricks

You're reading from   Practical Machine Learning on Databricks Seamlessly transition ML models and MLOps on Databricks

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781801812030
Length 244 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Debu Sinha Debu Sinha
Author Profile Icon Debu Sinha
Debu Sinha
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Introduction
2. Chapter 1: The ML Process and Its Challenges FREE CHAPTER 3. Chapter 2: Overview of ML on Databricks 4. Part 2: ML Pipeline Components and Implementation
5. Chapter 3: Utilizing the Feature Store 6. Chapter 4: Understanding MLflow Components on Databricks 7. Chapter 5: Create a Baseline Model Using Databricks AutoML 8. Part 3: ML Governance and Deployment
9. Chapter 6: Model Versioning and Webhooks 10. Chapter 7: Model Deployment Approaches 11. Chapter 8: Automating ML Workflows Using Databricks Jobs 12. Chapter 9: Model Drift Detection and Retraining 13. Chapter 10: Using CI/CD to Automate Model Retraining and Redeployment 14. Index 15. Other Books You May Enjoy

Automating ML Workflows Using Databricks Jobs

In the last chapter, we covered the ML deployment life cycle and the various model deployment paradigms. We also understood how the response latency, the scalability of the solution, and the way we are going to access the predictions play an important role in deciding the deployment method.

In this chapter, we are going to take a look at Databricks Workflows with Jobs (previously called Databricks Jobs). This functionality can be leveraged not only to schedule the retraining of our models at regular intervals but also to trigger tests to check our models when transitioning from one Model Registry stage to another using the webhook integrations we discussed in Chapter 6.

We will be covering the following topics:

  • Understanding Databricks Workflows
  • Utilizing Databricks Workflows with Jobs to automate model training and testing
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image