Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis Cookbook

You're reading from   Practical Data Analysis Cookbook Over 60 practical recipes on data exploration and analysis

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher
ISBN-13 9781783551668
Length 384 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Preparing the Data FREE CHAPTER 2. Exploring the Data 3. Classification Techniques 4. Clustering Techniques 5. Reducing Dimensions 6. Regression Methods 7. Time Series Techniques 8. Graphs 9. Natural Language Processing 10. Discrete Choice Models 11. Simulations Index

Preface

Data analytics and data science have garnered a lot of attention from businesses around the world. The amount of data generated these days is mind-boggling, and it keeps growing everyday; with the proliferation of mobiles, access to Facebook, YouTube, Netflix, or other 4K video content providers, and increasing reliance on cloud computing, we can only expect this to increase.

The task of a data scientist is to clean, transform, and analyze the data in order to provide the business with insights about its customers and/or competitors, monitor the health of the services provided by the company, or automatically present recommendations to drive more opportunities for cross-selling (among many others).

In this book, you will learn how to read, write, clean, and transform the data—the tasks that are the most time-consuming but also the most critical. We will then present you with a broad array of tools and techniques that any data scientist should master, ranging from classification, clustering, or regression, through graph theory and time-series analysis, to discrete choice modeling and simulations. In each chapter, we will present an array of detailed examples written in Python that will help you tackle virtually any problem that you might encounter in your career as a data scientist.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime