Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Data analysis with R

You're reading from   Mastering Data analysis with R Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783982028
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gergely Daróczi Gergely Daróczi
Author Profile Icon Gergely Daróczi
Gergely Daróczi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Hello, Data! FREE CHAPTER 2. Getting Data from the Web 3. Filtering and Summarizing Data 4. Restructuring Data 5. Building Models (authored by Renata Nemeth and Gergely Toth) 6. Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth) 7. Unstructured Data 8. Polishing Data 9. From Big to Small Data 10. Classification and Clustering 11. Social Network Analysis of the R Ecosystem 12. Analyzing Time-series 13. Data Around Us 14. Analyzing the R Community A. References Index

Rearranging data


Sometimes, we do not want to filter any part of the data (neither the rows, nor the columns), but the data is simply not in the most useful order due to convenience or performance issues, as we have seen, for instance, in Chapter 3, Filtering and Summarizing Data.

Besides the base sort and order functions, or providing the order of variables passed to the [ operator, we can also use some SQL-like solutions with the sqldf package, or query the data in the right format directly from the database. And the previously mentioned dplyr package also provides an effective method for ordering data. Let's sort the hflights data, based on the actual elapsed time for each of the quarter million flights:

> str(arrange(hflights, ActualElapsedTime))
'data.frame':  227496 obs. of  21 variables:
 $ Year             : int  2011 2011 2011 2011 2011 2011 ...
 $ Month            : int  7 7 8 9 1 4 5 6 7 8 ...
 $ DayofMonth       : int  24 25 13 21 3 29 9 21 8 2 ...
 $ DayOfWeek        : int...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image