Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

You're reading from   Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization Create user-kernel interfaces, work with peripheral I/O, and handle hardware interrupts

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781801079518
Length 452 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: Character Device Driver Basics
2. Writing a Simple misc Character Device Driver FREE CHAPTER 3. User-Kernel Communication Pathways 4. Working with Hardware I/O Memory 5. Handling Hardware Interrupts 6. Working with Kernel Timers, Threads, and Workqueues 7. Section 2: Delving Deeper
8. Kernel Synchronization - Part 1 9. Kernel Synchronization - Part 2 10. Other Books You May Enjoy

A misc driver with a secret

Now that you understand how to copy data between user and kernel space (and the reverse), let's write another device driver (ch1/miscdrv_rdwr) based on our previous skeleton (ch1/miscdrv/) miscellaneous driver. The key difference is that we use a few global data items (within a structure) throughout, and actually perform some I/O in the form of reads and writes. Here, let's introduce the notion of a driver context or private driver data structure; the idea is to have a conveniently accessible data structure that contains all relevant information in one place. Here, we name this structure struct drv_ctx (see it in the code listing that follows). On driver initialization, we allocate memory to and initialize it.

Okay, there's no real secret here, it just makes it sound interesting. One of the members within this driver context data structure of ours is a so-called secret message (it's the drv_ctx.oursecret member, along with some (fake) statistics and config words). This is the simple "driver context" or private data structure we propose using:

// ch1/miscdrv_rdwr/miscdrv_rdwr.c
[ ... ]
/* The driver 'context' (or private) data structure;
* all relevant 'state info' reg the driver is here. */
struct drv_ctx {
struct device *dev;
int tx, rx, err, myword;
u32 config1, config2;
u64 config3;
#define MAXBYTES 128 /* Must match the userspace app; we should actually
* use a common header file for things like this */
char oursecret[MAXBYTES];
};
static struct drv_ctx *ctx;

Great; now let's move on to seeing and understanding the code.

You have been reading a chapter from
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization
Published in: Mar 2021
Publisher: Packt
ISBN-13: 9781801079518
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime