Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning NumPy Array

You're reading from   Learning NumPy Array Supercharge your scientific Python computations by understanding how to use the NumPy library effectively

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783983902
Length 164 pages
Edition Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Learning NumPy Array
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with NumPy FREE CHAPTER 2. NumPy Basics 3. Basic Data Analysis with NumPy 4. Simple Predictive Analytics with NumPy 5. Signal Processing Techniques 6. Profiling, Debugging, and Testing 7. The Scientific Python Ecosystem Index

Stride tricks for Sudoku


We can do even more fancy things with NumPy. The ndarray class has a field, strides, which is a tuple indicating the number of bytes to step in each dimension when going through an array. Sudoku is a popular puzzle originally from Japan; although it was known in a similar form before in other countries. If you don't know about Sudoku, it's maybe better that way because it is highly addictive. Let's apply some stride tricks to the problem of splitting a Sudoku puzzle to the 3 x 3 squares it is composed of:

  1. First define the Sudoku puzzle array, as shown in the following code snippet. This one is filled with the contents of the actual solved Sudoku puzzle (part of the array is omitted for brevity).

    sudoku = np.array([[2, 8, 7, 1, 6, 5, 9, 4, 3],[9, 5, 4, 7, 3, 2, 1, 6, 8],…[7, 3, 6, 2, 8, 4, 5, 1, 9]])
  2. Now calculate the strides. The itemsize field of ndarray gives us the number of bytes in an array. itemsize calculates the strides as follows:

    strides = sudoku.itemsize ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image