Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python

You're reading from   Learning Geospatial Analysis with Python If you know Python and would like to use it for Geospatial Analysis this book is exactly what you've been looking for. With an organized, user-friendly approach it covers all the bases to give you the necessary skills and know-how.

Arrow left icon
Product type Paperback
Published in Oct 2013
Publisher Packt
ISBN-13 9781783281138
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Learning Geospatial Analysis with Python 2. Geospatial Data FREE CHAPTER 3. The Geospatial Technology Landscape 4. Geospatial Python Toolbox 5. Python and Geographic Information Systems 6. Python and Remote Sensing 7. Python and Elevation Data 8. Advanced Geospatial Python Modelling 9. Real-Time Data 10. Putting It All Together Index

Measuring distance


The essence of geospatial analysis is discovering the relationships of objects on the Earth. Items which are closer together tend to have a stronger relationship than those which are farther apart. Therefore measuring distance is a critical function of geospatial analysis.

As we have learned, every map is a model of the Earth and they are all wrong to some degree. For this reason, measuring accurate distance between two points on the Earth while sitting in front of a computer is impossible. Even professional land surveyors who go out in the field with both traditional sighting equipment and very precise GPS equipment fail to account for every anomaly in the Earth's surface between point A and point B. So in order to measure distance, we must look at what we are measuring, how much we are measuring, and how much accuracy we need.

There are three models of the Earth we can use to calculate distance:

  • Flat plane

  • Spherical

  • Ellipsoid

In the flat plane model, standard Euclidean geometry...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime