Decision trees are not only useful for their transparency and interpretability but are also fundamental building blocks for much more powerful ensemble models that combine many individual trees with strategies to randomly vary their design to address the overfitting and high variance problems discussed in the preceding section.
Random forests
Ensemble models
Ensemble learning involves combining several machine learning models into a single new model that aims to make better predictions than any individual model. More specifically, an ensemble integrates the predictions of several base estimators trained using one or more given learning algorithms to reduce the generalization error that these models may produce on their own...