It is common practice (as you will see next through the code examples of this chapter and from Chapter 7, Training Neural Networks with Spark, onward) to periodically insert a pooling layer between successive convolution layers in a CNN model. This kind of layers scope is to progressively reduce the number of parameters for the network (which translates into a significant lowering of the computation costs). In fact, spatial pooling (which is also found in literature as downsampling or subsampling) is a technique that reduces the dimensionality of each feature map, while at the same time retaining the most important part of the information. Different types of spatial pooling exist. The most used are max, average, sum, and L2-norm.
Let's take as an example, max pooling. This technique requires defining a spatial neighborhood (typically a 2 × 2 window);...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand