Exceedance probability forecasting with an LSTM
This recipe describes creating a probabilistic deep learning model to tackle exceedance tasks with a multivariate time series.
Getting ready
We’ll continue our example with the solar radiation dataset. Here’s the data module that we defined in the previous recipe:
N_LAGS = 14 HORIZON = 7 mvtseries = pd.read_csv('assets/daily_multivariate_timeseries.csv', parse_dates=['datetime'], index_col='datetime') datamodule = ExceedanceDataModule(data=mvtseries, batch_size=64, test_size=0.3)
Now, let’s see how to create a classifier using an LSTM neural network and PyTorch’s LightningModule
.
How to do it…
We will set up a binary classification using PyTorch Lightning’s LightningModule
. Here’s the constructor and...