Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Data Science with SQL Server Quick Start Guide
Data Science with SQL Server Quick Start Guide

Data Science with SQL Server Quick Start Guide: Integrate SQL Server with data science

eBook
€8.99 €22.99
Paperback
€27.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Data Science with SQL Server Quick Start Guide

Introducing R

When you talk about statistics, data mining, and machine learning, many people, especially those working in academic areas, think about R. R is the language that the engine that executes the code. You can use different R distributions, or versions of R engines and development tools; however, there is only one basic R language. Of course, to use it, you need to learn how to program in this language.

Statistics, data mining, and machine learning terms are very similar. You won't make a big mistake if you use them as synonyms. Statistics is the science of analyzing data collections, expressing the relationships as mathematical functions, and presenting and interpreting the results. In statistics, you usually work with sample data, or samples, because the population data, or the census, is not available to you. Data-mining analysis techniques are often...

Obtaining R

R is open source and free. R distribution is maintained by Comprehensive R Archive Network (CRAN) site at https://cran.r-project.org/. From this site, you can download the R engine for multiple platforms, including Windows, Linux, and macOS X. Besides CRAN, Microsoft also gives a free R download on the Microsoft R Application Network (MRAN) site at https://mran.revolutionanalytics.com/, which is where you can get Microsoft R Open. This is the open source R from Microsoft, which is the core R with additional Microsoft libraries. If you install Visual Studio 2017, you can also get Microsoft R Open—actually, you get what's called Microsoft R Client, which I will introduce in a minute.

After you install R, you can start working by using the R console client tool. With this tool, you can write code line by line. You can use also any of a plethora of additional...

Your first line R of code in R

R engine is an interpreter. Therefore, R is an interpreted language. In addition, R is a case-sensitive and functional language. Instead of typing commands, you call functions to perform an action. For example, to quit an R session, you need to call the q() function. You should extensively comment your code. A comment starts with a hash mark (#); you can use the comment anywhere in the line of code.

Any code after the start of the comment does not execute. A semicolon (;) is a command delimiter if you write more than one command in a single line. A new line is the command delimiter as well. The following code example shows a comment, displays my R version, and lists the authors and other contributors to the language using the contributors() function:

# R version and contributors
R.version.string
contributors()

Here...

Learning the basics of the R language

Now let's write some code that actually executes something:

1 + 2
2 + 5 * 4
3 ^ 4
sqrt(81)
pi

This code first evaluates three mathematical expressions using the basic operators. As you might expect, R evaluates the expressions using the mathematical operator precedence. The code calls the sqrt() function to calculate and checks the value of the constant for the number pi (π). The base R installation, or the base package, has many built-in constants. You can search the help for all pages that mention constants with ??"constants".

There are many ways to generate sequences of numbers, as you can see from the following code:

rep(1, 5)
4:8
seq(4, 8)
seq(4, 20, by = 3)

The first command replicates the number 1 five times with the help of the rep() function. You can generate a sequence of numbers with the help of the...

Using R data structures

As promised, I am now introducing the most important data structures in R. When you analyze the data, you analyze a dataset. A dataset looks like a SQL Server table: you can observe rows and columns. However, this is not a table in the relational sense, as defined in the Relational Model, which SQL Server follows. The order of rows and columns is not defined in a table that conforms to the Relational Model. However, in R, positions of cells as crossings of rows and columns are known. This is more like a matrix in mathematics.

In the R dataset, rows are also called cases or observations. You analyze the cases by using the values in their columns, also called variables or attributes of the cases. 

I will introduce the following data structures in this section:

  • Matrices and arrays
  • Factors
  • Lists
  • Data frames

A matrix is...

Summary

This chapter gave you an overview of the R language. You learned the basics, including how to write R expressions and create variables. The chapter introduced the data structures in R, with an emphasis on the most important one, the data frame. You saw how to read the data from SQL Server, store it in a data frame, and then retrieve it from the data frame. In Chapter 3, Getting Familiar with Python, before doing some additional manipulation of the data in a data frame to prepare it for further analysis, we will have a short introduction to the Python language.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Use the features of SQL Server 2017 to implement the data science project life cycle
  • Leverage the power of R and Python to design and develop efficient data models
  • find unique insights from your data with powerful techniques for data preprocessing and analysis

Description

SQL Server only started to fully support data science with its two most recent editions. If you are a professional from both worlds, SQL Server and data science, and interested in using SQL Server and Machine Learning (ML) Services for your projects, then this is the ideal book for you. This book is the ideal introduction to data science with Microsoft SQL Server and In-Database ML Services. It covers all stages of a data science project, from businessand data understanding,through data overview, data preparation, modeling and using algorithms, model evaluation, and deployment. You will learn to use the engines and languages that come with SQL Server, including ML Services with R and Python languages and Transact-SQL. You will also learn how to choose which algorithm to use for which task, and learn the working of each algorithm.

Who is this book for?

SQL Server professionals who want to start with data science, and data scientists who would like to start using SQL Server in their projects will find this book to be useful. Prior exposure to SQL Server will be helpful.

What you will learn

  • • Use the popular programming languages,T-SQL, R, and Python, for data science
  • • Understand your data with queries and introductory statistics
  • • Create and enhance the datasets for ML
  • • Visualize and analyze data using basic and advanced graphs
  • • Explore ML using unsupervised and supervised models
  • • Deploy models in SQL Server and perform predictions

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 31, 2018
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781789537130
Vendor :
Microsoft
Category :
Languages :
Concepts :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Aug 31, 2018
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781789537130
Vendor :
Microsoft
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 110.97
Data Science with SQL Server Quick Start Guide
€27.99
Hands-On Data Science with SQL Server 2017
€36.99
SQL Server 2017 Developer???s Guide
€45.99
Total 110.97 Stars icon
Banner background image

Table of Contents

9 Chapters
Writing Queries with T-SQL Chevron down icon Chevron up icon
Introducing R Chevron down icon Chevron up icon
Getting Familiar with Python Chevron down icon Chevron up icon
Data Overview Chevron down icon Chevron up icon
Data Preparation Chevron down icon Chevron up icon
Intermediate Statistics and Graphs Chevron down icon Chevron up icon
Unsupervised Machine Learning Chevron down icon Chevron up icon
Supervised Machine Learning Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
(1 Ratings)
5 star 0%
4 star 100%
3 star 0%
2 star 0%
1 star 0%
Rubén Dec 20, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
First of all, I want to explain that I have been given a copy of this book and that Dejan works in the same company I work but that is not conditioning my review. I have also read some other books authored or coauthored by Dejan covering topics like T-SQL programming & DW design.Cons----Maybe my expectations were too high or I'm just used to materials which go deeper on the topics than this book. This book pretends to be an introduction to data science using SQL Server an ML Services and it also pretends to cover all the stages of a data science project, all in a book of fewer than 200 pages, which seems a bit too optimistic.The end half of the book is where the most interesting topics are presented but everything seems a bit "accelerated" and some complex concepts are directly applied without many previous explanations. The number of different packages and libraries used in the examples increases a lot page after page making a bit complicated to follow the code (highly recommended to have side by side the libraries documentation). I also find somehow distracting to be jumping from one language to the other (R vs Python) instead of having the examples in both languages. I guess that some graphics engine/libraries and algorithms are only implemented on R or Python libraries so that jumping is not avoidable.Pros-----I think this book is useful for data professionals which had no previous knowledge of data science and R/Python. The first three chapters, a third of the book, are a basic introduction to T-SQL, R, and Python. Then we find an introduction to the data science project life cycle plus some basic statistical concepts. The second half of the book is the most interesting part from my point of view.In the second half of the book, we will get some insights on some discretization algorithms first and how to explore and measure the associations between variables. The unsupervised & supervised algorithms and methods presented are a good selection and they seem useful for lots of real scenarios. Most of the time you will need a "trial and error" approximation to see which one fits better, generate a better model, gets more accurate predictions, etc. I guess that an experienced data scientist will do a good initial "filtering" intuitively before and he/she will select the ones more promising based on previous experience & knowledge.Maybe the potential readers expect more on some topics but this book succeeded in its main goal; getting into the world of data science with SQL Server and its most used languages and algorithms.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.