Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Cleaning with Power BI

You're reading from   Data Cleaning with Power BI The definitive guide to transforming dirty data into actionable insights

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher
ISBN-13 9781805126409
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gus Frazer Gus Frazer
Author Profile Icon Gus Frazer
Gus Frazer
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1 – Introduction and Fundamentals FREE CHAPTER
2. Chapter 1: Introduction to Power BI Data Cleaning 3. Chapter 2: Understanding Data Quality and Why Data Cleaning is Important 4. Chapter 3: Data Cleaning Fundamentals and Principles 5. Chapter 4: The Most Common Data Cleaning Operations 6. Part 2 – Data Import and Query Editor
7. Chapter 5: Importing Data into Power BI 8. Chapter 6: Cleaning Data with Query Editor 9. Chapter 7: Transforming Data with the M Language 10. Chapter 8: Using Data Profiling for Exploratory Data Analysis (EDA) 11. Part 3 – Advanced Data Cleaning and Optimizations
12. Chapter 9: Advanced Data Cleaning Techniques 13. Chapter 10: Creating Custom Functions in Power Query 14. Chapter 11: M Query Optimization 15. Chapter 12: Data Modeling and Managing Relationships 16. Part 4 – Paginated Reports, Automations, and OpenAI
17. Chapter 13: Preparing Data for Paginated Reporting 18. Chapter 14: Automating Data Cleaning Tasks with Power Automate 19. Chapter 15: Making Life Easier with OpenAI 20. Assessments 21. Index 22. Other Books You May Enjoy

Summary

In this chapter, we explored aspects of data quality assessment and preparation during the process of importing data into Power BI. The chapter began with an understanding of the significance of clean data and the need to address data quality concerns. It emphasized that the top three factors to consider are data completeness, accuracy, and consistency, as they lay the foundation for reliable analyses and visualizations.

You learned about using Power BI’s data profiling capabilities to assess data completeness. By visualizing missing values and identifying columns that demand attention, you gained the skills to ensure a thorough and complete dataset.

Moving forward, your exploration of data accuracy unfolded with Power BI’s versatile tools such as conditional formatting and data profiling. These tools empower you to validate accuracy, detect errors, and pinpoint outliers.

Delving into data consistency, Power BI’s strong data modeling capabilities...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime