Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Cloud Scale Analytics with Azure Data Services

You're reading from   Cloud Scale Analytics with Azure Data Services Build modern data warehouses on Microsoft Azure

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800562936
Length 520 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Patrik Borosch Patrik Borosch
Author Profile Icon Patrik Borosch
Patrik Borosch
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Data Warehousing and Considerations Regarding Cloud Computing
2. Chapter 1: Balancing the Benefits of Data Lakes Over Data Warehouses FREE CHAPTER 3. Chapter 2: Connecting Requirements and Technology 4. Section 2: The Storage Layer
5. Chapter 3: Understanding the Data Lake Storage Layer 6. Chapter 4: Understanding Synapse SQL Pools and SQL Options 7. Section 3: Cloud-Scale Data Integration and Data Transformation
8. Chapter 5: Integrating Data into Your Modern Data Warehouse 9. Chapter 6: Using Synapse Spark Pools 10. Chapter 7: Using Databricks Spark Clusters 11. Chapter 8: Streaming Data into Your MDWH 12. Chapter 9: Integrating Azure Cognitive Services and Machine Learning 13. Chapter 10: Loading the Presentation Layer 14. Section 4: Data Presentation, Dashboarding, and Distribution
15. Chapter 11: Developing and Maintaining the Presentation Layer 16. Chapter 12: Distributing Data 17. Chapter 13: Introducing Industry Data Models 18. Chapter 14: Establishing Data Governance 19. Other Books You May Enjoy

Chapter 1: Balancing the Benefits of Data Lakes Over Data Warehouses

Is the Data Warehouse dead with the advent of Data Lakes? There is disagreement everywhere about the need for Data Warehousing in a modern data estate. With the rise of Data Lakes and Big Data technology, many people use other, newer technologies compared to databases for their analytical efforts. Establishing a data-driven company seems to be possible without all those narrow definitions and planned structures, the ETL/ELT, and all the indexing for performance. But when we examine the technology carefully, when we compare the requirements that are formulated in analytical projects, free of prejudice to the functionality that the chosen services or software packages can deliver, we often find gaps on both ends. This chapter discusses the capabilities of Data Warehousing and Data Lakes and introduces the concept of the Modern Data Warehouse.

With all the innovations that have been brought to us in the last few years, such as faster hardware, new technologies, and new dogmas such as the Data Lake, older concepts and methods are being questioned and challenged. In this chapter, I would like to explore the evolution of the analytical world and try to answer the question, is the Data Warehouse really obsolete?

We'll find out by covering the following topics:

  • Distinguishing between Data Warehouses and Data Lakes
  • Understanding the opportunities of modern cloud computing
  • Exploring the benefits of AI and ML
  • Answering the question
You have been reading a chapter from
Cloud Scale Analytics with Azure Data Services
Published in: Jul 2021
Publisher: Packt
ISBN-13: 9781800562936
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime