Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Clojure Data Analysis Cookbook - Second Edition

You're reading from   Clojure Data Analysis Cookbook - Second Edition Dive into data analysis with Clojure through over 100 practical recipes for every stage of the analysis and collection process

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784390297
Length 372 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Importing Data for Analysis 2. Cleaning and Validating Data FREE CHAPTER 3. Managing Complexity with Concurrent Programming 4. Improving Performance with Parallel Programming 5. Distributed Data Processing with Cascalog 6. Working with Incanter Datasets 7. Statistical Data Analysis with Incanter 8. Working with Mathematica and R 9. Clustering, Classifying, and Working with Weka 10. Working with Unstructured and Textual Data 11. Graphing in Incanter 12. Creating Charts for the Web Index

Finding the optimal partition size with simulated annealing


In the previous recipe, Partitioning Monte Carlo simulations for better pmap performance, we more or less guessed what will make a good partition size. We tried a few different values and saw what gives us the best results. However, it's still largely guesswork since just making the partitions larger or smaller doesn't give consistently better or worse results.

This is the type of task that computers are good at. Namely, searching a complex space to find the function parameters that result in an optimal output value. For this recipe, we'll use a fairly simple optimization algorithm called simulated annealing. Similar to many optimization algorithms, this is based on a natural process: the way molecules settle into low-energy configurations as the temperature drops to freezing. This is what allows water to form efficient crystal lattices as it freezes.

In simulated annealing, we feed a state to a cost function. At each point, we evaluate...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime